Mass distribution of fission fragments within the Born-Oppenheimer approximation
. The fission fragments mass-yield of 236 U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-mic...
Gespeichert in:
Veröffentlicht in: | The European physical journal. A, Hadrons and nuclei Hadrons and nuclei, 2017-03, Vol.53 (3), p.1-8, Article 59 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | The European physical journal. A, Hadrons and nuclei |
container_volume | 53 |
creator | Pomorski, K. Ivanyuk, F. A. Nerlo-Pomorska, B. |
description | .
The fission fragments mass-yield of
236
U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution. |
doi_str_mv | 10.1140/epja/i2017-12250-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880745051</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880745051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-ab9dbd924247c80931523f901728ae7c204e62ff83015b14094255e492a6e25f3</originalsourceid><addsrcrecordid>eNp1UMtKAzEUDaJgrf6Aq4Dr2JvXPJZafEGlLhTchcw0aVNsZkxS1L8304q4cXXP4jzuOQidU7ikVMDE9Gs9cQxoSShjEog8QCMquCAF0NfDXwz0GJ3EuAYAwepihJ4edYx44WIKrtkm13ncWWxdjAO0QS83xqeIP1xaOY_TyuDrLngy73vjV8ZtTMC670P36TZ6kJ-iI6vfojn7uWP0cnvzPL0ns_ndw_RqRlpe8ER0Uy-aRc0EE2VbQc2pZNzWuQCrtClbBsIUzNqKA5VNrlgLJqURNdOFYdLyMbrY--bs962JSa27bfA5UtGqglJIkDSz2J7Vhi7GYKzqQ340fCkKalhODcup3XJqt5ySWcT3opjJfmnCH-v_Vd_DIHL_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880745051</pqid></control><display><type>article</type><title>Mass distribution of fission fragments within the Born-Oppenheimer approximation</title><source>SpringerLink Journals - AutoHoldings</source><creator>Pomorski, K. ; Ivanyuk, F. A. ; Nerlo-Pomorska, B.</creator><creatorcontrib>Pomorski, K. ; Ivanyuk, F. A. ; Nerlo-Pomorska, B.</creatorcontrib><description>.
The fission fragments mass-yield of
236
U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution.</description><identifier>ISSN: 1434-6001</identifier><identifier>EISSN: 1434-601X</identifier><identifier>DOI: 10.1140/epja/i2017-12250-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Approximation ; Hadrons ; Heavy Ions ; Nuclear Fusion ; Nuclear Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Regular Article - Theoretical Physics</subject><ispartof>The European physical journal. A, Hadrons and nuclei, 2017-03, Vol.53 (3), p.1-8, Article 59</ispartof><rights>The Author(s) 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-ab9dbd924247c80931523f901728ae7c204e62ff83015b14094255e492a6e25f3</citedby><cites>FETCH-LOGICAL-c363t-ab9dbd924247c80931523f901728ae7c204e62ff83015b14094255e492a6e25f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epja/i2017-12250-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epja/i2017-12250-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Pomorski, K.</creatorcontrib><creatorcontrib>Ivanyuk, F. A.</creatorcontrib><creatorcontrib>Nerlo-Pomorska, B.</creatorcontrib><title>Mass distribution of fission fragments within the Born-Oppenheimer approximation</title><title>The European physical journal. A, Hadrons and nuclei</title><addtitle>Eur. Phys. J. A</addtitle><description>.
The fission fragments mass-yield of
236
U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution.</description><subject>Approximation</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Nuclear Fusion</subject><subject>Nuclear Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Regular Article - Theoretical Physics</subject><issn>1434-6001</issn><issn>1434-601X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1UMtKAzEUDaJgrf6Aq4Dr2JvXPJZafEGlLhTchcw0aVNsZkxS1L8304q4cXXP4jzuOQidU7ikVMDE9Gs9cQxoSShjEog8QCMquCAF0NfDXwz0GJ3EuAYAwepihJ4edYx44WIKrtkm13ncWWxdjAO0QS83xqeIP1xaOY_TyuDrLngy73vjV8ZtTMC670P36TZ6kJ-iI6vfojn7uWP0cnvzPL0ns_ndw_RqRlpe8ER0Uy-aRc0EE2VbQc2pZNzWuQCrtClbBsIUzNqKA5VNrlgLJqURNdOFYdLyMbrY--bs962JSa27bfA5UtGqglJIkDSz2J7Vhi7GYKzqQ340fCkKalhODcup3XJqt5ySWcT3opjJfmnCH-v_Vd_DIHL_</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Pomorski, K.</creator><creator>Ivanyuk, F. A.</creator><creator>Nerlo-Pomorska, B.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Mass distribution of fission fragments within the Born-Oppenheimer approximation</title><author>Pomorski, K. ; Ivanyuk, F. A. ; Nerlo-Pomorska, B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-ab9dbd924247c80931523f901728ae7c204e62ff83015b14094255e492a6e25f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Approximation</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Nuclear Fusion</topic><topic>Nuclear Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Regular Article - Theoretical Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pomorski, K.</creatorcontrib><creatorcontrib>Ivanyuk, F. A.</creatorcontrib><creatorcontrib>Nerlo-Pomorska, B.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pomorski, K.</au><au>Ivanyuk, F. A.</au><au>Nerlo-Pomorska, B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mass distribution of fission fragments within the Born-Oppenheimer approximation</atitle><jtitle>The European physical journal. A, Hadrons and nuclei</jtitle><stitle>Eur. Phys. J. A</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><artnum>59</artnum><issn>1434-6001</issn><eissn>1434-601X</eissn><abstract>.
The fission fragments mass-yield of
236
U is obtained by an approximate solution of the eigenvalue problem of the collective Hamiltonian that describes the dynamics of the fission process whose degrees of freedom are: the fission (elongation), the neck and mass-asymmetry modes. The macroscopic-microscopic method is used to evaluate the potential energy surface. The macroscopic energy part is calculated using the liquid drop model and the microscopic corrections are obtained using a Woods-Saxon single-particle levels. The four-dimensional modified Cassini ovals shape parametrization is used to describe the shape of the fissioning nucleus. The mass tensor is taken within a cranking-type approximation. The final fragment mass distribution is obtained by weighting the adiabatic density distribution in the collective space with the neck-dependent fission probability. The neck degree of freedom is found to play a significant role in determining the final fragment mass distribution.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epja/i2017-12250-5</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6001 |
ispartof | The European physical journal. A, Hadrons and nuclei, 2017-03, Vol.53 (3), p.1-8, Article 59 |
issn | 1434-6001 1434-601X |
language | eng |
recordid | cdi_proquest_journals_1880745051 |
source | SpringerLink Journals - AutoHoldings |
subjects | Approximation Hadrons Heavy Ions Nuclear Fusion Nuclear Physics Particle and Nuclear Physics Physics Physics and Astronomy Regular Article - Theoretical Physics |
title | Mass distribution of fission fragments within the Born-Oppenheimer approximation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T16%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mass%20distribution%20of%20fission%20fragments%20within%20the%20Born-Oppenheimer%20approximation&rft.jtitle=The%20European%20physical%20journal.%20A,%20Hadrons%20and%20nuclei&rft.au=Pomorski,%20K.&rft.date=2017-03-01&rft.volume=53&rft.issue=3&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.artnum=59&rft.issn=1434-6001&rft.eissn=1434-601X&rft_id=info:doi/10.1140/epja/i2017-12250-5&rft_dat=%3Cproquest_cross%3E1880745051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880745051&rft_id=info:pmid/&rfr_iscdi=true |