Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential

We consider a class of semilinear elliptic system of the form: 0.1 - Δ u ( x , y ) + ∇ W ( u ( x , y ) ) = 0 , ( x , y ) ∈ R 2 , where W : R 2 → R is a double well potential with minima a ± ∈ R 2 . We show, via variational methods, that if the set of minimal heteroclinic solutions to the one-dimensi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fixed point theory and applications 2017-03, Vol.19 (1), p.691-717
Hauptverfasser: Alessio, Francesca, Montecchiari, Piero
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 717
container_issue 1
container_start_page 691
container_title Journal of fixed point theory and applications
container_volume 19
creator Alessio, Francesca
Montecchiari, Piero
description We consider a class of semilinear elliptic system of the form: 0.1 - Δ u ( x , y ) + ∇ W ( u ( x , y ) ) = 0 , ( x , y ) ∈ R 2 , where W : R 2 → R is a double well potential with minima a ± ∈ R 2 . We show, via variational methods, that if the set of minimal heteroclinic solutions to the one-dimensional system - q ¨ ( x ) + ∇ W ( q ( x ) ) = 0 , x ∈ R , up to translations, is finite and constituted by not degenerate functions, then Eq. ( 0.1 ) has infinitely many solutions u ∈ C 2 ( R 2 ) 2 , parametrized by an energy value, which are periodic in the variable y and satisfy lim x → ± ∞ u ( x , y ) = a ± for any y ∈ R .
doi_str_mv 10.1007/s11784-016-0370-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880744815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880744815</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-ffc1d3cab6e3070bdb655ac8fc313444f831272fb98d5b9a5402ee566aec58543</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wk-dyjLn7Bghc9eQhpO9GsbVOTFNl_b5eKePE0w8wz78CD0Dkll5QQdZUoVZoXhMqCMEUKfoAWVEpaKMXl4W_P9DE6SWlLiCQlVQv0ehPtB-AQK59xCu2YfegTdiHiBJ1vfQ82YmhbP2Rf47RLGbqEv3x-xzbtug5ynOZNGKsW8NcE4iFk6LO37Sk6crZNcPZTl-jl7vZ5_VBsnu4f19ebomZU5sK5mjastpUERhSpmkoKYWvtpjXjnDvNaKlKV610I6qVFZyUAEJKC7XQgrMluphzhxg-R0jZbMMY--mloVoTxbmmYqLoTNUxpBTBmSH6zsadocTsHZrZoZkcmr1Ds08u55s0sf0bxD_J_x59A2T_dfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880744815</pqid></control><display><type>article</type><title>Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential</title><source>SpringerLink Journals - AutoHoldings</source><creator>Alessio, Francesca ; Montecchiari, Piero</creator><creatorcontrib>Alessio, Francesca ; Montecchiari, Piero</creatorcontrib><description>We consider a class of semilinear elliptic system of the form: 0.1 - Δ u ( x , y ) + ∇ W ( u ( x , y ) ) = 0 , ( x , y ) ∈ R 2 , where W : R 2 → R is a double well potential with minima a ± ∈ R 2 . We show, via variational methods, that if the set of minimal heteroclinic solutions to the one-dimensional system - q ¨ ( x ) + ∇ W ( q ( x ) ) = 0 , x ∈ R , up to translations, is finite and constituted by not degenerate functions, then Eq. ( 0.1 ) has infinitely many solutions u ∈ C 2 ( R 2 ) 2 , parametrized by an energy value, which are periodic in the variable y and satisfy lim x → ± ∞ u ( x , y ) = a ± for any y ∈ R .</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-016-0370-4</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Elliptical orbits ; Energy value ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Translations ; Variational methods</subject><ispartof>Journal of fixed point theory and applications, 2017-03, Vol.19 (1), p.691-717</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-ffc1d3cab6e3070bdb655ac8fc313444f831272fb98d5b9a5402ee566aec58543</citedby><cites>FETCH-LOGICAL-c316t-ffc1d3cab6e3070bdb655ac8fc313444f831272fb98d5b9a5402ee566aec58543</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11784-016-0370-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11784-016-0370-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Alessio, Francesca</creatorcontrib><creatorcontrib>Montecchiari, Piero</creatorcontrib><title>Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>We consider a class of semilinear elliptic system of the form: 0.1 - Δ u ( x , y ) + ∇ W ( u ( x , y ) ) = 0 , ( x , y ) ∈ R 2 , where W : R 2 → R is a double well potential with minima a ± ∈ R 2 . We show, via variational methods, that if the set of minimal heteroclinic solutions to the one-dimensional system - q ¨ ( x ) + ∇ W ( q ( x ) ) = 0 , x ∈ R , up to translations, is finite and constituted by not degenerate functions, then Eq. ( 0.1 ) has infinitely many solutions u ∈ C 2 ( R 2 ) 2 , parametrized by an energy value, which are periodic in the variable y and satisfy lim x → ± ∞ u ( x , y ) = a ± for any y ∈ R .</description><subject>Analysis</subject><subject>Elliptical orbits</subject><subject>Energy value</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Translations</subject><subject>Variational methods</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9Wk-dyjLn7Bghc9eQhpO9GsbVOTFNl_b5eKePE0w8wz78CD0Dkll5QQdZUoVZoXhMqCMEUKfoAWVEpaKMXl4W_P9DE6SWlLiCQlVQv0ehPtB-AQK59xCu2YfegTdiHiBJ1vfQ82YmhbP2Rf47RLGbqEv3x-xzbtug5ynOZNGKsW8NcE4iFk6LO37Sk6crZNcPZTl-jl7vZ5_VBsnu4f19ebomZU5sK5mjastpUERhSpmkoKYWvtpjXjnDvNaKlKV610I6qVFZyUAEJKC7XQgrMluphzhxg-R0jZbMMY--mloVoTxbmmYqLoTNUxpBTBmSH6zsadocTsHZrZoZkcmr1Ds08u55s0sf0bxD_J_x59A2T_dfM</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Alessio, Francesca</creator><creator>Montecchiari, Piero</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential</title><author>Alessio, Francesca ; Montecchiari, Piero</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-ffc1d3cab6e3070bdb655ac8fc313444f831272fb98d5b9a5402ee566aec58543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Elliptical orbits</topic><topic>Energy value</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Translations</topic><topic>Variational methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alessio, Francesca</creatorcontrib><creatorcontrib>Montecchiari, Piero</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alessio, Francesca</au><au>Montecchiari, Piero</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>19</volume><issue>1</issue><spage>691</spage><epage>717</epage><pages>691-717</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>We consider a class of semilinear elliptic system of the form: 0.1 - Δ u ( x , y ) + ∇ W ( u ( x , y ) ) = 0 , ( x , y ) ∈ R 2 , where W : R 2 → R is a double well potential with minima a ± ∈ R 2 . We show, via variational methods, that if the set of minimal heteroclinic solutions to the one-dimensional system - q ¨ ( x ) + ∇ W ( q ( x ) ) = 0 , x ∈ R , up to translations, is finite and constituted by not degenerate functions, then Eq. ( 0.1 ) has infinitely many solutions u ∈ C 2 ( R 2 ) 2 , parametrized by an energy value, which are periodic in the variable y and satisfy lim x → ± ∞ u ( x , y ) = a ± for any y ∈ R .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11784-016-0370-4</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1661-7738
ispartof Journal of fixed point theory and applications, 2017-03, Vol.19 (1), p.691-717
issn 1661-7738
1661-7746
language eng
recordid cdi_proquest_journals_1880744815
source SpringerLink Journals - AutoHoldings
subjects Analysis
Elliptical orbits
Energy value
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Translations
Variational methods
title Brake orbit solutions for semilinear elliptic systems with asymmetric double well potential
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A42%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brake%20orbit%20solutions%20for%20semilinear%20elliptic%20systems%20with%20asymmetric%20double%20well%20potential&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Alessio,%20Francesca&rft.date=2017-03-01&rft.volume=19&rft.issue=1&rft.spage=691&rft.epage=717&rft.pages=691-717&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-016-0370-4&rft_dat=%3Cproquest_cross%3E1880744815%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880744815&rft_id=info:pmid/&rfr_iscdi=true