Quasi-DC electrical discharge characterization in a supersonic flow

A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulse...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experiments in fluids 2017-04, Vol.58 (4), p.1-17, Article 25
Hauptverfasser: Houpt, Alec, Hedlund, Brock, Leonov, Sergey, Ombrello, Timothy, Carter, Campbell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17
container_issue 4
container_start_page 1
container_title Experiments in fluids
container_volume 58
creator Houpt, Alec
Hedlund, Brock
Leonov, Sergey
Ombrello, Timothy
Carter, Campbell
description A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M  = 2, stagnation pressure P 0  = (0.9–2.6) × 10 5  Pa, stagnation temperature T 0  = 300 K, unit Reynolds number R e L  = 7–25 × 10 6 m −1 , and plasma power W pl  = 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.
doi_str_mv 10.1007/s00348-016-2295-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880743750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880743750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA6-g5SdqmS6lXGBBh9iGTJmOG2o5Ji-jTm6Eu3Hg2Pxz-C3yEXCJcI0B1kwCEVAywZJzXBSuOyAKl4AwR5TFZQMUFk6qUp-QspR0AFjWoBWleJ5MCu2uo65wdY7Cmo21I9s3EraMHMXZ0MXybMQw9DT01NE17F9PQB0t9N3yekxNvuuQufnVJ1g_36-aJrV4en5vbFbMCy5G5WrXCOAtKoEM0qIyq7KYQpbcb69sWufKG2xI4Yp3_dT5QXhlspWjFklzNtfs4fEwujXo3TLHPixqVgkqKqoDswtll45BSdF7vY3g38Usj6AMqPaPSGZU-oNJFzvA5k7K337r4p_nf0A_6z2t_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880743750</pqid></control><display><type>article</type><title>Quasi-DC electrical discharge characterization in a supersonic flow</title><source>Springer Nature - Complete Springer Journals</source><creator>Houpt, Alec ; Hedlund, Brock ; Leonov, Sergey ; Ombrello, Timothy ; Carter, Campbell</creator><creatorcontrib>Houpt, Alec ; Hedlund, Brock ; Leonov, Sergey ; Ombrello, Timothy ; Carter, Campbell</creatorcontrib><description>A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M  = 2, stagnation pressure P 0  = (0.9–2.6) × 10 5  Pa, stagnation temperature T 0  = 300 K, unit Reynolds number R e L  = 7–25 × 10 6 m −1 , and plasma power W pl  = 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-016-2295-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active control ; Aerodynamics ; Air flow ; Boundary layer interaction ; Direct current ; Dynamic structural analysis ; Electric discharges ; Electric potential ; Electrical properties ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High speed ; Mach number ; Optical emission spectroscopy ; Plasma ; Plasmas (physics) ; Research Article ; Reynolds number ; Stagnation pressure ; Stagnation temperature ; Supersonic flow</subject><ispartof>Experiments in fluids, 2017-04, Vol.58 (4), p.1-17, Article 25</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</citedby><cites>FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-016-2295-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-016-2295-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Houpt, Alec</creatorcontrib><creatorcontrib>Hedlund, Brock</creatorcontrib><creatorcontrib>Leonov, Sergey</creatorcontrib><creatorcontrib>Ombrello, Timothy</creatorcontrib><creatorcontrib>Carter, Campbell</creatorcontrib><title>Quasi-DC electrical discharge characterization in a supersonic flow</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M  = 2, stagnation pressure P 0  = (0.9–2.6) × 10 5  Pa, stagnation temperature T 0  = 300 K, unit Reynolds number R e L  = 7–25 × 10 6 m −1 , and plasma power W pl  = 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.</description><subject>Active control</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Boundary layer interaction</subject><subject>Direct current</subject><subject>Dynamic structural analysis</subject><subject>Electric discharges</subject><subject>Electric potential</subject><subject>Electrical properties</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High speed</subject><subject>Mach number</subject><subject>Optical emission spectroscopy</subject><subject>Plasma</subject><subject>Plasmas (physics)</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Stagnation pressure</subject><subject>Stagnation temperature</subject><subject>Supersonic flow</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4-gLuA6-g5SdqmS6lXGBBh9iGTJmOG2o5Ji-jTm6Eu3Hg2Pxz-C3yEXCJcI0B1kwCEVAywZJzXBSuOyAKl4AwR5TFZQMUFk6qUp-QspR0AFjWoBWleJ5MCu2uo65wdY7Cmo21I9s3EraMHMXZ0MXybMQw9DT01NE17F9PQB0t9N3yekxNvuuQufnVJ1g_36-aJrV4en5vbFbMCy5G5WrXCOAtKoEM0qIyq7KYQpbcb69sWufKG2xI4Yp3_dT5QXhlspWjFklzNtfs4fEwujXo3TLHPixqVgkqKqoDswtll45BSdF7vY3g38Usj6AMqPaPSGZU-oNJFzvA5k7K337r4p_nf0A_6z2t_</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Houpt, Alec</creator><creator>Hedlund, Brock</creator><creator>Leonov, Sergey</creator><creator>Ombrello, Timothy</creator><creator>Carter, Campbell</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Quasi-DC electrical discharge characterization in a supersonic flow</title><author>Houpt, Alec ; Hedlund, Brock ; Leonov, Sergey ; Ombrello, Timothy ; Carter, Campbell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Boundary layer interaction</topic><topic>Direct current</topic><topic>Dynamic structural analysis</topic><topic>Electric discharges</topic><topic>Electric potential</topic><topic>Electrical properties</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High speed</topic><topic>Mach number</topic><topic>Optical emission spectroscopy</topic><topic>Plasma</topic><topic>Plasmas (physics)</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Stagnation pressure</topic><topic>Stagnation temperature</topic><topic>Supersonic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houpt, Alec</creatorcontrib><creatorcontrib>Hedlund, Brock</creatorcontrib><creatorcontrib>Leonov, Sergey</creatorcontrib><creatorcontrib>Ombrello, Timothy</creatorcontrib><creatorcontrib>Carter, Campbell</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houpt, Alec</au><au>Hedlund, Brock</au><au>Leonov, Sergey</au><au>Ombrello, Timothy</au><au>Carter, Campbell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-DC electrical discharge characterization in a supersonic flow</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>58</volume><issue>4</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>25</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number M  = 2, stagnation pressure P 0  = (0.9–2.6) × 10 5  Pa, stagnation temperature T 0  = 300 K, unit Reynolds number R e L  = 7–25 × 10 6 m −1 , and plasma power W pl  = 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-016-2295-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0723-4864
ispartof Experiments in fluids, 2017-04, Vol.58 (4), p.1-17, Article 25
issn 0723-4864
1432-1114
language eng
recordid cdi_proquest_journals_1880743750
source Springer Nature - Complete Springer Journals
subjects Active control
Aerodynamics
Air flow
Boundary layer interaction
Direct current
Dynamic structural analysis
Electric discharges
Electric potential
Electrical properties
Engineering
Engineering Fluid Dynamics
Engineering Thermodynamics
Fluid dynamics
Fluid flow
Fluid- and Aerodynamics
Heat and Mass Transfer
High speed
Mach number
Optical emission spectroscopy
Plasma
Plasmas (physics)
Research Article
Reynolds number
Stagnation pressure
Stagnation temperature
Supersonic flow
title Quasi-DC electrical discharge characterization in a supersonic flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-DC%20electrical%20discharge%20characterization%20in%20a%20supersonic%20flow&rft.jtitle=Experiments%20in%20fluids&rft.au=Houpt,%20Alec&rft.date=2017-04-01&rft.volume=58&rft.issue=4&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=25&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-016-2295-5&rft_dat=%3Cproquest_cross%3E1880743750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880743750&rft_id=info:pmid/&rfr_iscdi=true