Quasi-DC electrical discharge characterization in a supersonic flow
A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulse...
Gespeichert in:
Veröffentlicht in: | Experiments in fluids 2017-04, Vol.58 (4), p.1-17, Article 25 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | Experiments in fluids |
container_volume | 58 |
creator | Houpt, Alec Hedlund, Brock Leonov, Sergey Ombrello, Timothy Carter, Campbell |
description | A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number
M
= 2, stagnation pressure
P
0
= (0.9–2.6) × 10
5
Pa, stagnation temperature
T
0
= 300 K, unit Reynolds number
R
e
L
= 7–25 × 10
6
m
−1
, and plasma power
W
pl
= 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction. |
doi_str_mv | 10.1007/s00348-016-2295-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880743750</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880743750</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA6-g5SdqmS6lXGBBh9iGTJmOG2o5Ji-jTm6Eu3Hg2Pxz-C3yEXCJcI0B1kwCEVAywZJzXBSuOyAKl4AwR5TFZQMUFk6qUp-QspR0AFjWoBWleJ5MCu2uo65wdY7Cmo21I9s3EraMHMXZ0MXybMQw9DT01NE17F9PQB0t9N3yekxNvuuQufnVJ1g_36-aJrV4en5vbFbMCy5G5WrXCOAtKoEM0qIyq7KYQpbcb69sWufKG2xI4Yp3_dT5QXhlspWjFklzNtfs4fEwujXo3TLHPixqVgkqKqoDswtll45BSdF7vY3g38Usj6AMqPaPSGZU-oNJFzvA5k7K337r4p_nf0A_6z2t_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880743750</pqid></control><display><type>article</type><title>Quasi-DC electrical discharge characterization in a supersonic flow</title><source>Springer Nature - Complete Springer Journals</source><creator>Houpt, Alec ; Hedlund, Brock ; Leonov, Sergey ; Ombrello, Timothy ; Carter, Campbell</creator><creatorcontrib>Houpt, Alec ; Hedlund, Brock ; Leonov, Sergey ; Ombrello, Timothy ; Carter, Campbell</creatorcontrib><description>A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number
M
= 2, stagnation pressure
P
0
= (0.9–2.6) × 10
5
Pa, stagnation temperature
T
0
= 300 K, unit Reynolds number
R
e
L
= 7–25 × 10
6
m
−1
, and plasma power
W
pl
= 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.</description><identifier>ISSN: 0723-4864</identifier><identifier>EISSN: 1432-1114</identifier><identifier>DOI: 10.1007/s00348-016-2295-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Active control ; Aerodynamics ; Air flow ; Boundary layer interaction ; Direct current ; Dynamic structural analysis ; Electric discharges ; Electric potential ; Electrical properties ; Engineering ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Fluid dynamics ; Fluid flow ; Fluid- and Aerodynamics ; Heat and Mass Transfer ; High speed ; Mach number ; Optical emission spectroscopy ; Plasma ; Plasmas (physics) ; Research Article ; Reynolds number ; Stagnation pressure ; Stagnation temperature ; Supersonic flow</subject><ispartof>Experiments in fluids, 2017-04, Vol.58 (4), p.1-17, Article 25</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</citedby><cites>FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00348-016-2295-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00348-016-2295-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Houpt, Alec</creatorcontrib><creatorcontrib>Hedlund, Brock</creatorcontrib><creatorcontrib>Leonov, Sergey</creatorcontrib><creatorcontrib>Ombrello, Timothy</creatorcontrib><creatorcontrib>Carter, Campbell</creatorcontrib><title>Quasi-DC electrical discharge characterization in a supersonic flow</title><title>Experiments in fluids</title><addtitle>Exp Fluids</addtitle><description>A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number
M
= 2, stagnation pressure
P
0
= (0.9–2.6) × 10
5
Pa, stagnation temperature
T
0
= 300 K, unit Reynolds number
R
e
L
= 7–25 × 10
6
m
−1
, and plasma power
W
pl
= 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.</description><subject>Active control</subject><subject>Aerodynamics</subject><subject>Air flow</subject><subject>Boundary layer interaction</subject><subject>Direct current</subject><subject>Dynamic structural analysis</subject><subject>Electric discharges</subject><subject>Electric potential</subject><subject>Electrical properties</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid- and Aerodynamics</subject><subject>Heat and Mass Transfer</subject><subject>High speed</subject><subject>Mach number</subject><subject>Optical emission spectroscopy</subject><subject>Plasma</subject><subject>Plasmas (physics)</subject><subject>Research Article</subject><subject>Reynolds number</subject><subject>Stagnation pressure</subject><subject>Stagnation temperature</subject><subject>Supersonic flow</subject><issn>0723-4864</issn><issn>1432-1114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4-gLuA6-g5SdqmS6lXGBBh9iGTJmOG2o5Ji-jTm6Eu3Hg2Pxz-C3yEXCJcI0B1kwCEVAywZJzXBSuOyAKl4AwR5TFZQMUFk6qUp-QspR0AFjWoBWleJ5MCu2uo65wdY7Cmo21I9s3EraMHMXZ0MXybMQw9DT01NE17F9PQB0t9N3yekxNvuuQufnVJ1g_36-aJrV4en5vbFbMCy5G5WrXCOAtKoEM0qIyq7KYQpbcb69sWufKG2xI4Yp3_dT5QXhlspWjFklzNtfs4fEwujXo3TLHPixqVgkqKqoDswtll45BSdF7vY3g38Usj6AMqPaPSGZU-oNJFzvA5k7K337r4p_nf0A_6z2t_</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Houpt, Alec</creator><creator>Hedlund, Brock</creator><creator>Leonov, Sergey</creator><creator>Ombrello, Timothy</creator><creator>Carter, Campbell</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Quasi-DC electrical discharge characterization in a supersonic flow</title><author>Houpt, Alec ; Hedlund, Brock ; Leonov, Sergey ; Ombrello, Timothy ; Carter, Campbell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e98d3aec0831e11a18a87cb536fcbcfdd128fa2c602119b53999908f8a1d43d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Active control</topic><topic>Aerodynamics</topic><topic>Air flow</topic><topic>Boundary layer interaction</topic><topic>Direct current</topic><topic>Dynamic structural analysis</topic><topic>Electric discharges</topic><topic>Electric potential</topic><topic>Electrical properties</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid- and Aerodynamics</topic><topic>Heat and Mass Transfer</topic><topic>High speed</topic><topic>Mach number</topic><topic>Optical emission spectroscopy</topic><topic>Plasma</topic><topic>Plasmas (physics)</topic><topic>Research Article</topic><topic>Reynolds number</topic><topic>Stagnation pressure</topic><topic>Stagnation temperature</topic><topic>Supersonic flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Houpt, Alec</creatorcontrib><creatorcontrib>Hedlund, Brock</creatorcontrib><creatorcontrib>Leonov, Sergey</creatorcontrib><creatorcontrib>Ombrello, Timothy</creatorcontrib><creatorcontrib>Carter, Campbell</creatorcontrib><collection>CrossRef</collection><jtitle>Experiments in fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Houpt, Alec</au><au>Hedlund, Brock</au><au>Leonov, Sergey</au><au>Ombrello, Timothy</au><au>Carter, Campbell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quasi-DC electrical discharge characterization in a supersonic flow</atitle><jtitle>Experiments in fluids</jtitle><stitle>Exp Fluids</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>58</volume><issue>4</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>25</artnum><issn>0723-4864</issn><eissn>1432-1114</eissn><abstract>A Quasi-DC (Q-DC) electrical discharge generates a highly transient filamentary plasma in high-speed airflow. Major specific properties of this type of discharge are realized due to a strong coupling of the plasma to the moving gas. The plasma, supplied by a DC voltage waveform, demonstrates a pulsed-periodic pattern of dynamics significantly affecting the flow structure. In this study, the dynamics and plasma parameters of the Q-DC discharge are analyzed in the Supersonic Test Rig (SBR-50) at the University of Notre Dame at Mach number
M
= 2, stagnation pressure
P
0
= (0.9–2.6) × 10
5
Pa, stagnation temperature
T
0
= 300 K, unit Reynolds number
R
e
L
= 7–25 × 10
6
m
−1
, and plasma power
W
pl
= 3–21 kW. The plasma parameters are measured with current–voltage probes and optical emission spectroscopy. An unsteady pattern of interaction is depicted by high-speed image capturing. The result of the plasma-flow interaction is characterized by means of pressure measurements and schlieren visualization. It is considered that the Q-DC discharge may be employed for active control of duct-driven flows, cavity-based flow, and for effective control of shock wave–boundary layer interaction.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00348-016-2295-5</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0723-4864 |
ispartof | Experiments in fluids, 2017-04, Vol.58 (4), p.1-17, Article 25 |
issn | 0723-4864 1432-1114 |
language | eng |
recordid | cdi_proquest_journals_1880743750 |
source | Springer Nature - Complete Springer Journals |
subjects | Active control Aerodynamics Air flow Boundary layer interaction Direct current Dynamic structural analysis Electric discharges Electric potential Electrical properties Engineering Engineering Fluid Dynamics Engineering Thermodynamics Fluid dynamics Fluid flow Fluid- and Aerodynamics Heat and Mass Transfer High speed Mach number Optical emission spectroscopy Plasma Plasmas (physics) Research Article Reynolds number Stagnation pressure Stagnation temperature Supersonic flow |
title | Quasi-DC electrical discharge characterization in a supersonic flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A20%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quasi-DC%20electrical%20discharge%20characterization%20in%20a%20supersonic%20flow&rft.jtitle=Experiments%20in%20fluids&rft.au=Houpt,%20Alec&rft.date=2017-04-01&rft.volume=58&rft.issue=4&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=25&rft.issn=0723-4864&rft.eissn=1432-1114&rft_id=info:doi/10.1007/s00348-016-2295-5&rft_dat=%3Cproquest_cross%3E1880743750%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880743750&rft_id=info:pmid/&rfr_iscdi=true |