SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies
In an effort to study and characterize scattering mechanisms of debris particles in tornadoes, a numerical polarimetric radar emulator was developed. This paper is primarily motivated by attempts to explain radar observations near tornadoes. One such observation is the regions of negative differenti...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on geoscience and remote sensing 2017-05, Vol.55 (5), p.2858-2870 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2870 |
---|---|
container_issue | 5 |
container_start_page | 2858 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 55 |
creator | Boon Leng Cheong Bodine, David J. Fulton, Caleb J. Torres, Sebastian M. Maruyama, Takashi Palmer, Robert D. |
description | In an effort to study and characterize scattering mechanisms of debris particles in tornadoes, a numerical polarimetric radar emulator was developed. This paper is primarily motivated by attempts to explain radar observations near tornadoes. One such observation is the regions of negative differential reflectivity, which have been found near tornadoes but they are yet to be explained physically. There are hypotheses that suggest common debris alignment and/or dominant scattering from objects with high radar-cross-section (RCS) values that cause negative Z DR , but they are extremely challenging to verify due to the inherent danger near the vicinity of tornadoes. It is, however, possible to numerically construct the scenes through representative simulations to verify the plausible causes. This serves as our primary motivation to develop the radar emulator. The novel aspects of this paper are the realistic trajectory derivation, which is based on a physical air-drag model, and the representative diversity of RCS contributions from each debris object, developed through realistic polarimetric RCS modeling and anechoic chamber measurements. |
doi_str_mv | 10.1109/TGRS.2017.2655363 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1879743954</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7858625</ieee_id><sourcerecordid>1879743954</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-c934aa42e183d9ce9bfc0252b056e520be924cb48e63ada874f6efb2515281e33</originalsourceid><addsrcrecordid>eNo9kE1PwzAMhiMEEuPjByAulTh3xPlqwm0aMJAmMW3lHKWpK3Xq6EjaA_-ejE0cLMv2Y-v1S8gd0CkANY_lYr2ZMgrFlCkpueJnZAJS6pwqIc7JhIJROdOGXZKrGLeUgpBQTMhq0-7WrnbhKZtlq75zod3hEFqf_XWzMpX5BkOLMUvo2LmhD1mTouzDl6sT-IxVaNN0GOtE3ZCLxnURb0_5mny-vpTzt3z5sXifz5a551wNuTdcOCcYgua18WiqxlMmWUWlQslohYYJXwmNiichuhCNwqZiEiTTgJxfk4fj3X3ov0eMg932Y1LURQu6MIXgRopEwZHyoY8xYGP36UEXfixQezDOHoyzB-Psybi0c3_caRHxny-01IpJ_guTAWkW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879743954</pqid></control><display><type>article</type><title>SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies</title><source>IEEE Electronic Library (IEL)</source><creator>Boon Leng Cheong ; Bodine, David J. ; Fulton, Caleb J. ; Torres, Sebastian M. ; Maruyama, Takashi ; Palmer, Robert D.</creator><creatorcontrib>Boon Leng Cheong ; Bodine, David J. ; Fulton, Caleb J. ; Torres, Sebastian M. ; Maruyama, Takashi ; Palmer, Robert D.</creatorcontrib><description>In an effort to study and characterize scattering mechanisms of debris particles in tornadoes, a numerical polarimetric radar emulator was developed. This paper is primarily motivated by attempts to explain radar observations near tornadoes. One such observation is the regions of negative differential reflectivity, which have been found near tornadoes but they are yet to be explained physically. There are hypotheses that suggest common debris alignment and/or dominant scattering from objects with high radar-cross-section (RCS) values that cause negative Z DR , but they are extremely challenging to verify due to the inherent danger near the vicinity of tornadoes. It is, however, possible to numerically construct the scenes through representative simulations to verify the plausible causes. This serves as our primary motivation to develop the radar emulator. The novel aspects of this paper are the realistic trajectory derivation, which is based on a physical air-drag model, and the representative diversity of RCS contributions from each debris object, developed through realistic polarimetric RCS modeling and anechoic chamber measurements.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2017.2655363</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Anechoic chambers ; Atmospheric modeling ; Computer simulation ; Debris ; Debris flow ; Detritus ; Emulators ; Mathematical models ; Meteorology ; Modelling ; Motivation ; Numerical models ; Polarimetric radar ; Polarization ; Radar ; radar cross section ; Radar cross sections ; Radar polarimetry ; Reflection ; Scattering ; Scatterometers ; simulation ; software ; time series ; Tornadoes</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2017-05, Vol.55 (5), p.2858-2870</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-c934aa42e183d9ce9bfc0252b056e520be924cb48e63ada874f6efb2515281e33</citedby><cites>FETCH-LOGICAL-c336t-c934aa42e183d9ce9bfc0252b056e520be924cb48e63ada874f6efb2515281e33</cites><orcidid>0000-0002-6746-717X ; 0000-0002-5150-5557</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7858625$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7858625$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Boon Leng Cheong</creatorcontrib><creatorcontrib>Bodine, David J.</creatorcontrib><creatorcontrib>Fulton, Caleb J.</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><creatorcontrib>Maruyama, Takashi</creatorcontrib><creatorcontrib>Palmer, Robert D.</creatorcontrib><title>SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>In an effort to study and characterize scattering mechanisms of debris particles in tornadoes, a numerical polarimetric radar emulator was developed. This paper is primarily motivated by attempts to explain radar observations near tornadoes. One such observation is the regions of negative differential reflectivity, which have been found near tornadoes but they are yet to be explained physically. There are hypotheses that suggest common debris alignment and/or dominant scattering from objects with high radar-cross-section (RCS) values that cause negative Z DR , but they are extremely challenging to verify due to the inherent danger near the vicinity of tornadoes. It is, however, possible to numerically construct the scenes through representative simulations to verify the plausible causes. This serves as our primary motivation to develop the radar emulator. The novel aspects of this paper are the realistic trajectory derivation, which is based on a physical air-drag model, and the representative diversity of RCS contributions from each debris object, developed through realistic polarimetric RCS modeling and anechoic chamber measurements.</description><subject>Anechoic chambers</subject><subject>Atmospheric modeling</subject><subject>Computer simulation</subject><subject>Debris</subject><subject>Debris flow</subject><subject>Detritus</subject><subject>Emulators</subject><subject>Mathematical models</subject><subject>Meteorology</subject><subject>Modelling</subject><subject>Motivation</subject><subject>Numerical models</subject><subject>Polarimetric radar</subject><subject>Polarization</subject><subject>Radar</subject><subject>radar cross section</subject><subject>Radar cross sections</subject><subject>Radar polarimetry</subject><subject>Reflection</subject><subject>Scattering</subject><subject>Scatterometers</subject><subject>simulation</subject><subject>software</subject><subject>time series</subject><subject>Tornadoes</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwzAMhiMEEuPjByAulTh3xPlqwm0aMJAmMW3lHKWpK3Xq6EjaA_-ejE0cLMv2Y-v1S8gd0CkANY_lYr2ZMgrFlCkpueJnZAJS6pwqIc7JhIJROdOGXZKrGLeUgpBQTMhq0-7WrnbhKZtlq75zod3hEFqf_XWzMpX5BkOLMUvo2LmhD1mTouzDl6sT-IxVaNN0GOtE3ZCLxnURb0_5mny-vpTzt3z5sXifz5a551wNuTdcOCcYgua18WiqxlMmWUWlQslohYYJXwmNiichuhCNwqZiEiTTgJxfk4fj3X3ov0eMg932Y1LURQu6MIXgRopEwZHyoY8xYGP36UEXfixQezDOHoyzB-Psybi0c3_caRHxny-01IpJ_guTAWkW</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Boon Leng Cheong</creator><creator>Bodine, David J.</creator><creator>Fulton, Caleb J.</creator><creator>Torres, Sebastian M.</creator><creator>Maruyama, Takashi</creator><creator>Palmer, Robert D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6746-717X</orcidid><orcidid>https://orcid.org/0000-0002-5150-5557</orcidid></search><sort><creationdate>201705</creationdate><title>SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies</title><author>Boon Leng Cheong ; Bodine, David J. ; Fulton, Caleb J. ; Torres, Sebastian M. ; Maruyama, Takashi ; Palmer, Robert D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-c934aa42e183d9ce9bfc0252b056e520be924cb48e63ada874f6efb2515281e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anechoic chambers</topic><topic>Atmospheric modeling</topic><topic>Computer simulation</topic><topic>Debris</topic><topic>Debris flow</topic><topic>Detritus</topic><topic>Emulators</topic><topic>Mathematical models</topic><topic>Meteorology</topic><topic>Modelling</topic><topic>Motivation</topic><topic>Numerical models</topic><topic>Polarimetric radar</topic><topic>Polarization</topic><topic>Radar</topic><topic>radar cross section</topic><topic>Radar cross sections</topic><topic>Radar polarimetry</topic><topic>Reflection</topic><topic>Scattering</topic><topic>Scatterometers</topic><topic>simulation</topic><topic>software</topic><topic>time series</topic><topic>Tornadoes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boon Leng Cheong</creatorcontrib><creatorcontrib>Bodine, David J.</creatorcontrib><creatorcontrib>Fulton, Caleb J.</creatorcontrib><creatorcontrib>Torres, Sebastian M.</creatorcontrib><creatorcontrib>Maruyama, Takashi</creatorcontrib><creatorcontrib>Palmer, Robert D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Boon Leng Cheong</au><au>Bodine, David J.</au><au>Fulton, Caleb J.</au><au>Torres, Sebastian M.</au><au>Maruyama, Takashi</au><au>Palmer, Robert D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2017-05</date><risdate>2017</risdate><volume>55</volume><issue>5</issue><spage>2858</spage><epage>2870</epage><pages>2858-2870</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>In an effort to study and characterize scattering mechanisms of debris particles in tornadoes, a numerical polarimetric radar emulator was developed. This paper is primarily motivated by attempts to explain radar observations near tornadoes. One such observation is the regions of negative differential reflectivity, which have been found near tornadoes but they are yet to be explained physically. There are hypotheses that suggest common debris alignment and/or dominant scattering from objects with high radar-cross-section (RCS) values that cause negative Z DR , but they are extremely challenging to verify due to the inherent danger near the vicinity of tornadoes. It is, however, possible to numerically construct the scenes through representative simulations to verify the plausible causes. This serves as our primary motivation to develop the radar emulator. The novel aspects of this paper are the realistic trajectory derivation, which is based on a physical air-drag model, and the representative diversity of RCS contributions from each debris object, developed through realistic polarimetric RCS modeling and anechoic chamber measurements.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2017.2655363</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6746-717X</orcidid><orcidid>https://orcid.org/0000-0002-5150-5557</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2017-05, Vol.55 (5), p.2858-2870 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_proquest_journals_1879743954 |
source | IEEE Electronic Library (IEL) |
subjects | Anechoic chambers Atmospheric modeling Computer simulation Debris Debris flow Detritus Emulators Mathematical models Meteorology Modelling Motivation Numerical models Polarimetric radar Polarization Radar radar cross section Radar cross sections Radar polarimetry Reflection Scattering Scatterometers simulation software time series Tornadoes |
title | SimRadar: A Polarimetric Radar Time-Series Simulator for Tornadic Debris Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A00%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=SimRadar:%20A%20Polarimetric%20Radar%20Time-Series%20Simulator%20for%20Tornadic%20Debris%20Studies&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Boon%20Leng%20Cheong&rft.date=2017-05&rft.volume=55&rft.issue=5&rft.spage=2858&rft.epage=2870&rft.pages=2858-2870&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2017.2655363&rft_dat=%3Cproquest_RIE%3E1879743954%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879743954&rft_id=info:pmid/&rft_ieee_id=7858625&rfr_iscdi=true |