A box decomposition algorithm to compute the hypervolume indicator
We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities a...
Gespeichert in:
Veröffentlicht in: | Computers & operations research 2017-03, Vol.79, p.347-360 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 360 |
---|---|
container_issue | |
container_start_page | 347 |
container_title | Computers & operations research |
container_volume | 79 |
creator | Lacour, Renaud Klamroth, Kathrin Fonseca, Carlos M. |
description | We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm.
•We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm. |
doi_str_mv | 10.1016/j.cor.2016.06.021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1879041876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054816301538</els_id><sourcerecordid>4321012653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEP4BaJc0vcJm0qTmPiS5rEBSRuUZe4LNW6lCRF7N-TaZyxLNuS_eznR8g1sBwYVLd9rp3Pi1TmLHkBJ2QGsi6zuhIfp2TGSiYyJrg8Jxch9CxZXcCM3C_o2v1Qg9oNows2Wrej7fbTeRs3A42OHhpTRBo3SDf7Ef23204DUrszVrfR-Uty1rXbgFd_eU7eHx_els_Z6vXpZblYZboUVcy6gkvJtQHZNmsBEjWsm0qIGpA3EhM3BqZA0XZgeFmZ2jStlLKWuuw48q6ck5vj3tG7rwlDVL2b_C6dVOnThvEUqzQFxyntXQgeOzV6O7R-r4Cpg1SqV0kqdZBKseQFJMzdEYOJ_rdFr4K2uNNorEcdlXH2H_QvYSdxMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879041876</pqid></control><display><type>article</type><title>A box decomposition algorithm to compute the hypervolume indicator</title><source>Elsevier ScienceDirect Journals</source><creator>Lacour, Renaud ; Klamroth, Kathrin ; Fonseca, Carlos M.</creator><creatorcontrib>Lacour, Renaud ; Klamroth, Kathrin ; Fonseca, Carlos M.</creatorcontrib><description>We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm.
•We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2016.06.021</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Computational mathematics ; Hypervolume indicator ; Klee's measure problem ; Multi-objective optimization ; Optimization ; Studies</subject><ispartof>Computers & operations research, 2017-03, Vol.79, p.347-360</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</citedby><cites>FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2016.06.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Lacour, Renaud</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Fonseca, Carlos M.</creatorcontrib><title>A box decomposition algorithm to compute the hypervolume indicator</title><title>Computers & operations research</title><description>We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm.
•We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Hypervolume indicator</subject><subject>Klee's measure problem</subject><subject>Multi-objective optimization</subject><subject>Optimization</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEP4BaJc0vcJm0qTmPiS5rEBSRuUZe4LNW6lCRF7N-TaZyxLNuS_eznR8g1sBwYVLd9rp3Pi1TmLHkBJ2QGsi6zuhIfp2TGSiYyJrg8Jxch9CxZXcCM3C_o2v1Qg9oNows2Wrej7fbTeRs3A42OHhpTRBo3SDf7Ef23204DUrszVrfR-Uty1rXbgFd_eU7eHx_els_Z6vXpZblYZboUVcy6gkvJtQHZNmsBEjWsm0qIGpA3EhM3BqZA0XZgeFmZ2jStlLKWuuw48q6ck5vj3tG7rwlDVL2b_C6dVOnThvEUqzQFxyntXQgeOzV6O7R-r4Cpg1SqV0kqdZBKseQFJMzdEYOJ_rdFr4K2uNNorEcdlXH2H_QvYSdxMw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Lacour, Renaud</creator><creator>Klamroth, Kathrin</creator><creator>Fonseca, Carlos M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>A box decomposition algorithm to compute the hypervolume indicator</title><author>Lacour, Renaud ; Klamroth, Kathrin ; Fonseca, Carlos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Hypervolume indicator</topic><topic>Klee's measure problem</topic><topic>Multi-objective optimization</topic><topic>Optimization</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacour, Renaud</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Fonseca, Carlos M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers & operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacour, Renaud</au><au>Klamroth, Kathrin</au><au>Fonseca, Carlos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A box decomposition algorithm to compute the hypervolume indicator</atitle><jtitle>Computers & operations research</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>79</volume><spage>347</spage><epage>360</epage><pages>347-360</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm.
•We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2016.06.021</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-0548 |
ispartof | Computers & operations research, 2017-03, Vol.79, p.347-360 |
issn | 0305-0548 1873-765X 0305-0548 |
language | eng |
recordid | cdi_proquest_journals_1879041876 |
source | Elsevier ScienceDirect Journals |
subjects | Algorithms Approximation Computational mathematics Hypervolume indicator Klee's measure problem Multi-objective optimization Optimization Studies |
title | A box decomposition algorithm to compute the hypervolume indicator |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20box%20decomposition%20algorithm%20to%20compute%20the%20hypervolume%20indicator&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lacour,%20Renaud&rft.date=2017-03-01&rft.volume=79&rft.spage=347&rft.epage=360&rft.pages=347-360&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2016.06.021&rft_dat=%3Cproquest_cross%3E4321012653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879041876&rft_id=info:pmid/&rft_els_id=S0305054816301538&rfr_iscdi=true |