A box decomposition algorithm to compute the hypervolume indicator

We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2017-03, Vol.79, p.347-360
Hauptverfasser: Lacour, Renaud, Klamroth, Kathrin, Fonseca, Carlos M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 360
container_issue
container_start_page 347
container_title Computers & operations research
container_volume 79
creator Lacour, Renaud
Klamroth, Kathrin
Fonseca, Carlos M.
description We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm. •We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.
doi_str_mv 10.1016/j.cor.2016.06.021
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1879041876</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054816301538</els_id><sourcerecordid>4321012653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</originalsourceid><addsrcrecordid>eNp9UE1PwzAMjRBIjMEP4BaJc0vcJm0qTmPiS5rEBSRuUZe4LNW6lCRF7N-TaZyxLNuS_eznR8g1sBwYVLd9rp3Pi1TmLHkBJ2QGsi6zuhIfp2TGSiYyJrg8Jxch9CxZXcCM3C_o2v1Qg9oNows2Wrej7fbTeRs3A42OHhpTRBo3SDf7Ef23204DUrszVrfR-Uty1rXbgFd_eU7eHx_els_Z6vXpZblYZboUVcy6gkvJtQHZNmsBEjWsm0qIGpA3EhM3BqZA0XZgeFmZ2jStlLKWuuw48q6ck5vj3tG7rwlDVL2b_C6dVOnThvEUqzQFxyntXQgeOzV6O7R-r4Cpg1SqV0kqdZBKseQFJMzdEYOJ_rdFr4K2uNNorEcdlXH2H_QvYSdxMw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1879041876</pqid></control><display><type>article</type><title>A box decomposition algorithm to compute the hypervolume indicator</title><source>Elsevier ScienceDirect Journals</source><creator>Lacour, Renaud ; Klamroth, Kathrin ; Fonseca, Carlos M.</creator><creatorcontrib>Lacour, Renaud ; Klamroth, Kathrin ; Fonseca, Carlos M.</creatorcontrib><description>We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm. •We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2016.06.021</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Algorithms ; Approximation ; Computational mathematics ; Hypervolume indicator ; Klee's measure problem ; Multi-objective optimization ; Optimization ; Studies</subject><ispartof>Computers &amp; operations research, 2017-03, Vol.79, p.347-360</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</citedby><cites>FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2016.06.021$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,778,782,3539,27907,27908,45978</link.rule.ids></links><search><creatorcontrib>Lacour, Renaud</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Fonseca, Carlos M.</creatorcontrib><title>A box decomposition algorithm to compute the hypervolume indicator</title><title>Computers &amp; operations research</title><description>We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm. •We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Computational mathematics</subject><subject>Hypervolume indicator</subject><subject>Klee's measure problem</subject><subject>Multi-objective optimization</subject><subject>Optimization</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9UE1PwzAMjRBIjMEP4BaJc0vcJm0qTmPiS5rEBSRuUZe4LNW6lCRF7N-TaZyxLNuS_eznR8g1sBwYVLd9rp3Pi1TmLHkBJ2QGsi6zuhIfp2TGSiYyJrg8Jxch9CxZXcCM3C_o2v1Qg9oNows2Wrej7fbTeRs3A42OHhpTRBo3SDf7Ef23204DUrszVrfR-Uty1rXbgFd_eU7eHx_els_Z6vXpZblYZboUVcy6gkvJtQHZNmsBEjWsm0qIGpA3EhM3BqZA0XZgeFmZ2jStlLKWuuw48q6ck5vj3tG7rwlDVL2b_C6dVOnThvEUqzQFxyntXQgeOzV6O7R-r4Cpg1SqV0kqdZBKseQFJMzdEYOJ_rdFr4K2uNNorEcdlXH2H_QvYSdxMw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Lacour, Renaud</creator><creator>Klamroth, Kathrin</creator><creator>Fonseca, Carlos M.</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170301</creationdate><title>A box decomposition algorithm to compute the hypervolume indicator</title><author>Lacour, Renaud ; Klamroth, Kathrin ; Fonseca, Carlos M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-f24884cd18a9b518ec1b965571e498e05401d2e5af1d436d7d9a88878c3f4e4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Computational mathematics</topic><topic>Hypervolume indicator</topic><topic>Klee's measure problem</topic><topic>Multi-objective optimization</topic><topic>Optimization</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lacour, Renaud</creatorcontrib><creatorcontrib>Klamroth, Kathrin</creatorcontrib><creatorcontrib>Fonseca, Carlos M.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lacour, Renaud</au><au>Klamroth, Kathrin</au><au>Fonseca, Carlos M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A box decomposition algorithm to compute the hypervolume indicator</atitle><jtitle>Computers &amp; operations research</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>79</volume><spage>347</spage><epage>360</epage><pages>347-360</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>We propose a new approach to the computation of the hypervolume indicator, based on partitioning the dominated region into a set of axis-parallel hyperrectangles or boxes. We present a nonincremental algorithm and an incremental algorithm, which allows insertions of points, whose time complexities are O(n⌊p−12⌋+1) and O(n⌊p2⌋+1), respectively, where n is the number of points and p is the dimension of the objective space. While the theoretical complexity of such a method is lower bounded by the complexity of the partition, which is, in the worst-case, larger than the best upper bound on the complexity of the hypervolume computation, we show that it is practically efficient. In particular, the nonincremental algorithm competes with the currently most practically efficient algorithms. Finally, we prove an enhanced upper bound of O(np−1) and a lower bound of Ω(n⌊p2⌋logn) for p≥4 on the worst-case complexity of the WFG algorithm. •We propose a theoretically and practically efficient method to compute hypervolumes.•We partition the dominated region into axis-parallel hyperrectangles or boxes.•We provide a refined analysis of the complexity of the WFG algorithm.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2016.06.021</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2017-03, Vol.79, p.347-360
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_1879041876
source Elsevier ScienceDirect Journals
subjects Algorithms
Approximation
Computational mathematics
Hypervolume indicator
Klee's measure problem
Multi-objective optimization
Optimization
Studies
title A box decomposition algorithm to compute the hypervolume indicator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T17%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20box%20decomposition%20algorithm%20to%20compute%20the%20hypervolume%20indicator&rft.jtitle=Computers%20&%20operations%20research&rft.au=Lacour,%20Renaud&rft.date=2017-03-01&rft.volume=79&rft.spage=347&rft.epage=360&rft.pages=347-360&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2016.06.021&rft_dat=%3Cproquest_cross%3E4321012653%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1879041876&rft_id=info:pmid/&rft_els_id=S0305054816301538&rfr_iscdi=true