A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem

•A new hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem (H-DARP).•Efficient crossover operators and local search techniques.•Experiments on existing DARP and H-DARP instances and new, larger, H-DARP instances.•Computational experiments show the effectiveness of our algorithm compar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research 2017-05, Vol.81, p.1-13
Hauptverfasser: Masmoudi, Mohamed Amine, Braekers, Kris, Masmoudi, Malek, Dammak, Abdelaziz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue
container_start_page 1
container_title Computers & operations research
container_volume 81
creator Masmoudi, Mohamed Amine
Braekers, Kris
Masmoudi, Malek
Dammak, Abdelaziz
description •A new hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem (H-DARP).•Efficient crossover operators and local search techniques.•Experiments on existing DARP and H-DARP instances and new, larger, H-DARP instances.•Computational experiments show the effectiveness of our algorithm compared to the current state-of-the-art algorithms. This paper investigates the Heterogeneous Dial-A-Ride Problem (H-DARP) that consists of determining a vehicle route planning for heterogeneous users’ transportation with a heterogeneous fleet of vehicles. A hybrid Genetic Algorithm (GA) is proposed to solve the problem. Efficient construction heuristics, crossover operators and local search techniques, specifically tailored to the characteristics of the H-DARP, are provided. The proposed algorithm is tested on 92 benchmarks instances and 40 newly introduced larger instances. Computational experiments show the effectiveness of our approach compared to the current state-of-the-art algorithms for the DARP and H-DARP. When tested on the existing instances, we achieved average gaps of only 0.47% to the best-known solutions for the DARP, and 0.05% to the optimal solutions for the H-DARP, compared to 0.85% and 0.10%, respectively, obtained by the current state-of-the-art algorithms. For the 40 newly generated instances, average gaps of the hybrid GA are 0.35% smaller compared to the current state-of-the-art method. Besides, our method provides best results for 31 of these instances and ties with the existing method on 8 other instances.
doi_str_mv 10.1016/j.cor.2016.12.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1878754720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0305054816303070</els_id><sourcerecordid>4320981009</sourcerecordid><originalsourceid>FETCH-LOGICAL-c482t-a67997e1e075206da998cbe8bf32b26819ac709d8cc2aea03c331ec8e20cbaba3</originalsourceid><addsrcrecordid>eNp9kN9LwzAQx4MoOKd_gG8Bn1sv6dqk-FQ2twkDRRR8C2l63VK6ZSadsP_ejPnsvdzBfb_340PIPYOUASseu9Q4n_JYpoynAPKCjJgUWSKK_OuSjCCDPIF8Iq_JTQgdxBCcjcisoptj7W1DF7jDwRpa9Wvn7bDZ0tZ5OmyQLnFA79ax7w6Bzqzukyp5tw3SN-_qHre35KrVfcC7vzwmn_Pnj-kyWb0uXqbVKjETyYdEF6IsBTIEkXMoGl2W0tQo6zbjNS8kK7URUDbSGK5RQ2ayjKGRyMHUutbZmDyc5-69-z5gGFTnDn4XV6r4qxT5RHCIKnZWGe9C8Niqvbdb7Y-KgTrBUp2KsNQJlmJcRVjR83T2YDz_x6JXwVjcGWysRzOoxtl_3L8zyXE6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1878754720</pqid></control><display><type>article</type><title>A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem</title><source>Access via ScienceDirect (Elsevier)</source><creator>Masmoudi, Mohamed Amine ; Braekers, Kris ; Masmoudi, Malek ; Dammak, Abdelaziz</creator><creatorcontrib>Masmoudi, Mohamed Amine ; Braekers, Kris ; Masmoudi, Malek ; Dammak, Abdelaziz</creatorcontrib><description>•A new hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem (H-DARP).•Efficient crossover operators and local search techniques.•Experiments on existing DARP and H-DARP instances and new, larger, H-DARP instances.•Computational experiments show the effectiveness of our algorithm compared to the current state-of-the-art algorithms. This paper investigates the Heterogeneous Dial-A-Ride Problem (H-DARP) that consists of determining a vehicle route planning for heterogeneous users’ transportation with a heterogeneous fleet of vehicles. A hybrid Genetic Algorithm (GA) is proposed to solve the problem. Efficient construction heuristics, crossover operators and local search techniques, specifically tailored to the characteristics of the H-DARP, are provided. The proposed algorithm is tested on 92 benchmarks instances and 40 newly introduced larger instances. Computational experiments show the effectiveness of our approach compared to the current state-of-the-art algorithms for the DARP and H-DARP. When tested on the existing instances, we achieved average gaps of only 0.47% to the best-known solutions for the DARP, and 0.05% to the optimal solutions for the H-DARP, compared to 0.85% and 0.10%, respectively, obtained by the current state-of-the-art algorithms. For the 40 newly generated instances, average gaps of the hybrid GA are 0.35% smaller compared to the current state-of-the-art method. Besides, our method provides best results for 31 of these instances and ties with the existing method on 8 other instances.</description><identifier>ISSN: 0305-0548</identifier><identifier>EISSN: 1873-765X</identifier><identifier>EISSN: 0305-0548</identifier><identifier>DOI: 10.1016/j.cor.2016.12.008</identifier><identifier>CODEN: CMORAP</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Benchmarks ; Construction heuristics ; Genetic Algorithm (GA) ; Genetic algorithms ; Heterogeneous Dial-A-Ride Problem (H-DARP) ; Heuristic ; Hybrid algorithm ; Local Search (LS) ; Studies</subject><ispartof>Computers &amp; operations research, 2017-05, Vol.81, p.1-13</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c482t-a67997e1e075206da998cbe8bf32b26819ac709d8cc2aea03c331ec8e20cbaba3</citedby><cites>FETCH-LOGICAL-c482t-a67997e1e075206da998cbe8bf32b26819ac709d8cc2aea03c331ec8e20cbaba3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.cor.2016.12.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Masmoudi, Mohamed Amine</creatorcontrib><creatorcontrib>Braekers, Kris</creatorcontrib><creatorcontrib>Masmoudi, Malek</creatorcontrib><creatorcontrib>Dammak, Abdelaziz</creatorcontrib><title>A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem</title><title>Computers &amp; operations research</title><description>•A new hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem (H-DARP).•Efficient crossover operators and local search techniques.•Experiments on existing DARP and H-DARP instances and new, larger, H-DARP instances.•Computational experiments show the effectiveness of our algorithm compared to the current state-of-the-art algorithms. This paper investigates the Heterogeneous Dial-A-Ride Problem (H-DARP) that consists of determining a vehicle route planning for heterogeneous users’ transportation with a heterogeneous fleet of vehicles. A hybrid Genetic Algorithm (GA) is proposed to solve the problem. Efficient construction heuristics, crossover operators and local search techniques, specifically tailored to the characteristics of the H-DARP, are provided. The proposed algorithm is tested on 92 benchmarks instances and 40 newly introduced larger instances. Computational experiments show the effectiveness of our approach compared to the current state-of-the-art algorithms for the DARP and H-DARP. When tested on the existing instances, we achieved average gaps of only 0.47% to the best-known solutions for the DARP, and 0.05% to the optimal solutions for the H-DARP, compared to 0.85% and 0.10%, respectively, obtained by the current state-of-the-art algorithms. For the 40 newly generated instances, average gaps of the hybrid GA are 0.35% smaller compared to the current state-of-the-art method. Besides, our method provides best results for 31 of these instances and ties with the existing method on 8 other instances.</description><subject>Benchmarks</subject><subject>Construction heuristics</subject><subject>Genetic Algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Heterogeneous Dial-A-Ride Problem (H-DARP)</subject><subject>Heuristic</subject><subject>Hybrid algorithm</subject><subject>Local Search (LS)</subject><subject>Studies</subject><issn>0305-0548</issn><issn>1873-765X</issn><issn>0305-0548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kN9LwzAQx4MoOKd_gG8Bn1sv6dqk-FQ2twkDRRR8C2l63VK6ZSadsP_ejPnsvdzBfb_340PIPYOUASseu9Q4n_JYpoynAPKCjJgUWSKK_OuSjCCDPIF8Iq_JTQgdxBCcjcisoptj7W1DF7jDwRpa9Wvn7bDZ0tZ5OmyQLnFA79ax7w6Bzqzukyp5tw3SN-_qHre35KrVfcC7vzwmn_Pnj-kyWb0uXqbVKjETyYdEF6IsBTIEkXMoGl2W0tQo6zbjNS8kK7URUDbSGK5RQ2ayjKGRyMHUutbZmDyc5-69-z5gGFTnDn4XV6r4qxT5RHCIKnZWGe9C8Niqvbdb7Y-KgTrBUp2KsNQJlmJcRVjR83T2YDz_x6JXwVjcGWysRzOoxtl_3L8zyXE6</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Masmoudi, Mohamed Amine</creator><creator>Braekers, Kris</creator><creator>Masmoudi, Malek</creator><creator>Dammak, Abdelaziz</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170501</creationdate><title>A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem</title><author>Masmoudi, Mohamed Amine ; Braekers, Kris ; Masmoudi, Malek ; Dammak, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c482t-a67997e1e075206da998cbe8bf32b26819ac709d8cc2aea03c331ec8e20cbaba3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Benchmarks</topic><topic>Construction heuristics</topic><topic>Genetic Algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Heterogeneous Dial-A-Ride Problem (H-DARP)</topic><topic>Heuristic</topic><topic>Hybrid algorithm</topic><topic>Local Search (LS)</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Masmoudi, Mohamed Amine</creatorcontrib><creatorcontrib>Braekers, Kris</creatorcontrib><creatorcontrib>Masmoudi, Malek</creatorcontrib><creatorcontrib>Dammak, Abdelaziz</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computers &amp; operations research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Masmoudi, Mohamed Amine</au><au>Braekers, Kris</au><au>Masmoudi, Malek</au><au>Dammak, Abdelaziz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem</atitle><jtitle>Computers &amp; operations research</jtitle><date>2017-05-01</date><risdate>2017</risdate><volume>81</volume><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0305-0548</issn><eissn>1873-765X</eissn><eissn>0305-0548</eissn><coden>CMORAP</coden><abstract>•A new hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem (H-DARP).•Efficient crossover operators and local search techniques.•Experiments on existing DARP and H-DARP instances and new, larger, H-DARP instances.•Computational experiments show the effectiveness of our algorithm compared to the current state-of-the-art algorithms. This paper investigates the Heterogeneous Dial-A-Ride Problem (H-DARP) that consists of determining a vehicle route planning for heterogeneous users’ transportation with a heterogeneous fleet of vehicles. A hybrid Genetic Algorithm (GA) is proposed to solve the problem. Efficient construction heuristics, crossover operators and local search techniques, specifically tailored to the characteristics of the H-DARP, are provided. The proposed algorithm is tested on 92 benchmarks instances and 40 newly introduced larger instances. Computational experiments show the effectiveness of our approach compared to the current state-of-the-art algorithms for the DARP and H-DARP. When tested on the existing instances, we achieved average gaps of only 0.47% to the best-known solutions for the DARP, and 0.05% to the optimal solutions for the H-DARP, compared to 0.85% and 0.10%, respectively, obtained by the current state-of-the-art algorithms. For the 40 newly generated instances, average gaps of the hybrid GA are 0.35% smaller compared to the current state-of-the-art method. Besides, our method provides best results for 31 of these instances and ties with the existing method on 8 other instances.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.cor.2016.12.008</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-0548
ispartof Computers & operations research, 2017-05, Vol.81, p.1-13
issn 0305-0548
1873-765X
0305-0548
language eng
recordid cdi_proquest_journals_1878754720
source Access via ScienceDirect (Elsevier)
subjects Benchmarks
Construction heuristics
Genetic Algorithm (GA)
Genetic algorithms
Heterogeneous Dial-A-Ride Problem (H-DARP)
Heuristic
Hybrid algorithm
Local Search (LS)
Studies
title A hybrid Genetic Algorithm for the Heterogeneous Dial-A-Ride Problem
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T07%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20Genetic%20Algorithm%20for%20the%20Heterogeneous%20Dial-A-Ride%20Problem&rft.jtitle=Computers%20&%20operations%20research&rft.au=Masmoudi,%20Mohamed%20Amine&rft.date=2017-05-01&rft.volume=81&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0305-0548&rft.eissn=1873-765X&rft.coden=CMORAP&rft_id=info:doi/10.1016/j.cor.2016.12.008&rft_dat=%3Cproquest_cross%3E4320981009%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1878754720&rft_id=info:pmid/&rft_els_id=S0305054816303070&rfr_iscdi=true