Conformational and intramolecular hydrogen bonding effects on post-emergence and pre-emergence selectivities of herbicidal pyrrole dicarboxylates

Dimethyl 2‐methyl‐5‐(chloropyridin‐2‐yl)pyrrole‐3,4‐dicarboxylates in which the chlorine atom is substituted at different positions of the pyridine ring have widely varying biological properties. The 3‐chloro analog (I) is a post‐emergence and pre‐emergence herbicide, the 4‐ and 5‐chloro analogs (II...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pesticide Science 1990, Vol.28 (1), p.49-68
Hauptverfasser: Andrea, Tariq A., Stranz, David D., Yang, Alex, Kleier, Daniel A., Patel, Kanu M., Powell, James E., Price, Thomas P., Marynick, Dennis S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 49
container_title Pesticide Science
container_volume 28
creator Andrea, Tariq A.
Stranz, David D.
Yang, Alex
Kleier, Daniel A.
Patel, Kanu M.
Powell, James E.
Price, Thomas P.
Marynick, Dennis S.
description Dimethyl 2‐methyl‐5‐(chloropyridin‐2‐yl)pyrrole‐3,4‐dicarboxylates in which the chlorine atom is substituted at different positions of the pyridine ring have widely varying biological properties. The 3‐chloro analog (I) is a post‐emergence and pre‐emergence herbicide, the 4‐ and 5‐chloro analogs (II, III) are post‐emergence herbicides but not pre‐emergence, and the 6‐chloro analog (IV) is inactive. Computer graphic and molecular mechanics analyses of their molecular conformations showed that the 4‐ and 5‐chloro analogs adopt a coplanar, intramolecularly hydrogen bonded conformation whereas the 3‐chloro analog does not. High‐level quantum mechanical calculations of the conformational preferences of related model systems were in agreement with these results. Based on this, II and III were predicted to have higher octanol/water partition coefficients relative to I, leading to higher soil binding and weaker xylem transport, hence their observed weaker pre‐emergence activities. Experimental measurements of octanol/water partition coefficients, soil binding, and infrared hydrogen bonding studies verified these predictions. Molecular modeling techniques are usually used for designing compounds to fit enzyme active sites and designing putative receptor models. This study demonstrates the usefulness of these techniques for dealing with transport problems.
doi_str_mv 10.1002/ps.2780280108
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1877108863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877108863</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2518-65192ec84278a9084ecb1d49b078e468d23300c288161b412c161469d6b836ca3</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EEkvhyN0SXFPsOOvYR7SCFqkq2xYEN8txJq1L1g5jLzQ_o_8Yt7sqcOlpJPu97808Ql5zdsgZq99N6bBuFasV40w9IQvOtKw0k-IpWTAmeCW5-P6cvEjpmjGmtRYLcruKYYi4sdnHYEdqQ099yGg3cQS3HS3Sq7nHeAmBdjH0PlxSGAZwOdEY6BRTrmADWP4d3LsnhH9eEhRM9r989lAcA70C7LzzfcmaZsSSQnvvLHbxZh5thvSSPBvsmODVfh6Qrx8_fFkdVyefjz6t3p9Url5yVckl1zU41ZSTrWaqAdfxvtEdaxU0UvW1EIy5Wikuedfw2pXZSN3LTgnprDggb3bcCePPLaRsruMWSwfJcNW2pUIlRVFVO5XDmBLCYCb0G4uz4czctW6mZP62XvRv91SbnB0HtMH59GCSbdlKyyJrd7LffoT5caZZX_wXsF_Ipww3D06LP-7g7dJ8Oz0ya3XWrE-Pl-Zc_AFZ2aOa</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877108863</pqid></control><display><type>article</type><title>Conformational and intramolecular hydrogen bonding effects on post-emergence and pre-emergence selectivities of herbicidal pyrrole dicarboxylates</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Periodicals Index Online</source><creator>Andrea, Tariq A. ; Stranz, David D. ; Yang, Alex ; Kleier, Daniel A. ; Patel, Kanu M. ; Powell, James E. ; Price, Thomas P. ; Marynick, Dennis S.</creator><creatorcontrib>Andrea, Tariq A. ; Stranz, David D. ; Yang, Alex ; Kleier, Daniel A. ; Patel, Kanu M. ; Powell, James E. ; Price, Thomas P. ; Marynick, Dennis S.</creatorcontrib><description>Dimethyl 2‐methyl‐5‐(chloropyridin‐2‐yl)pyrrole‐3,4‐dicarboxylates in which the chlorine atom is substituted at different positions of the pyridine ring have widely varying biological properties. The 3‐chloro analog (I) is a post‐emergence and pre‐emergence herbicide, the 4‐ and 5‐chloro analogs (II, III) are post‐emergence herbicides but not pre‐emergence, and the 6‐chloro analog (IV) is inactive. Computer graphic and molecular mechanics analyses of their molecular conformations showed that the 4‐ and 5‐chloro analogs adopt a coplanar, intramolecularly hydrogen bonded conformation whereas the 3‐chloro analog does not. High‐level quantum mechanical calculations of the conformational preferences of related model systems were in agreement with these results. Based on this, II and III were predicted to have higher octanol/water partition coefficients relative to I, leading to higher soil binding and weaker xylem transport, hence their observed weaker pre‐emergence activities. Experimental measurements of octanol/water partition coefficients, soil binding, and infrared hydrogen bonding studies verified these predictions. Molecular modeling techniques are usually used for designing compounds to fit enzyme active sites and designing putative receptor models. This study demonstrates the usefulness of these techniques for dealing with transport problems.</description><identifier>ISSN: 0031-613X</identifier><identifier>ISSN: 1526-498X</identifier><identifier>EISSN: 1096-9063</identifier><identifier>DOI: 10.1002/ps.2780280108</identifier><identifier>CODEN: PSSCBG</identifier><language>eng</language><publisher>London: John Wiley &amp; Sons, Ltd</publisher><subject>Biological and medical sciences ; Chemical control ; Fundamental and applied biological sciences. Psychology ; Parasitic plants. Weeds ; Phytopathology. Animal pests. Plant and forest protection ; Weeds</subject><ispartof>Pesticide Science, 1990, Vol.28 (1), p.49-68</ispartof><rights>Copyright © 1990 John Wiley &amp; Sons, Ltd</rights><rights>1990 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2518-65192ec84278a9084ecb1d49b078e468d23300c288161b412c161469d6b836ca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fps.2780280108$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fps.2780280108$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,4010,27846,27900,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=6733096$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Andrea, Tariq A.</creatorcontrib><creatorcontrib>Stranz, David D.</creatorcontrib><creatorcontrib>Yang, Alex</creatorcontrib><creatorcontrib>Kleier, Daniel A.</creatorcontrib><creatorcontrib>Patel, Kanu M.</creatorcontrib><creatorcontrib>Powell, James E.</creatorcontrib><creatorcontrib>Price, Thomas P.</creatorcontrib><creatorcontrib>Marynick, Dennis S.</creatorcontrib><title>Conformational and intramolecular hydrogen bonding effects on post-emergence and pre-emergence selectivities of herbicidal pyrrole dicarboxylates</title><title>Pesticide Science</title><addtitle>Pestic. Sci</addtitle><description>Dimethyl 2‐methyl‐5‐(chloropyridin‐2‐yl)pyrrole‐3,4‐dicarboxylates in which the chlorine atom is substituted at different positions of the pyridine ring have widely varying biological properties. The 3‐chloro analog (I) is a post‐emergence and pre‐emergence herbicide, the 4‐ and 5‐chloro analogs (II, III) are post‐emergence herbicides but not pre‐emergence, and the 6‐chloro analog (IV) is inactive. Computer graphic and molecular mechanics analyses of their molecular conformations showed that the 4‐ and 5‐chloro analogs adopt a coplanar, intramolecularly hydrogen bonded conformation whereas the 3‐chloro analog does not. High‐level quantum mechanical calculations of the conformational preferences of related model systems were in agreement with these results. Based on this, II and III were predicted to have higher octanol/water partition coefficients relative to I, leading to higher soil binding and weaker xylem transport, hence their observed weaker pre‐emergence activities. Experimental measurements of octanol/water partition coefficients, soil binding, and infrared hydrogen bonding studies verified these predictions. Molecular modeling techniques are usually used for designing compounds to fit enzyme active sites and designing putative receptor models. This study demonstrates the usefulness of these techniques for dealing with transport problems.</description><subject>Biological and medical sciences</subject><subject>Chemical control</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Parasitic plants. Weeds</subject><subject>Phytopathology. Animal pests. Plant and forest protection</subject><subject>Weeds</subject><issn>0031-613X</issn><issn>1526-498X</issn><issn>1096-9063</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNp9kEFv1DAQhS0EEkvhyN0SXFPsOOvYR7SCFqkq2xYEN8txJq1L1g5jLzQ_o_8Yt7sqcOlpJPu97808Ql5zdsgZq99N6bBuFasV40w9IQvOtKw0k-IpWTAmeCW5-P6cvEjpmjGmtRYLcruKYYi4sdnHYEdqQ099yGg3cQS3HS3Sq7nHeAmBdjH0PlxSGAZwOdEY6BRTrmADWP4d3LsnhH9eEhRM9r989lAcA70C7LzzfcmaZsSSQnvvLHbxZh5thvSSPBvsmODVfh6Qrx8_fFkdVyefjz6t3p9Url5yVckl1zU41ZSTrWaqAdfxvtEdaxU0UvW1EIy5Wikuedfw2pXZSN3LTgnprDggb3bcCePPLaRsruMWSwfJcNW2pUIlRVFVO5XDmBLCYCb0G4uz4czctW6mZP62XvRv91SbnB0HtMH59GCSbdlKyyJrd7LffoT5caZZX_wXsF_Ipww3D06LP-7g7dJ8Oz0ya3XWrE-Pl-Zc_AFZ2aOa</recordid><startdate>1990</startdate><enddate>1990</enddate><creator>Andrea, Tariq A.</creator><creator>Stranz, David D.</creator><creator>Yang, Alex</creator><creator>Kleier, Daniel A.</creator><creator>Patel, Kanu M.</creator><creator>Powell, James E.</creator><creator>Price, Thomas P.</creator><creator>Marynick, Dennis S.</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><general>London :John Wiley &amp; Sons Ltd</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>1990</creationdate><title>Conformational and intramolecular hydrogen bonding effects on post-emergence and pre-emergence selectivities of herbicidal pyrrole dicarboxylates</title><author>Andrea, Tariq A. ; Stranz, David D. ; Yang, Alex ; Kleier, Daniel A. ; Patel, Kanu M. ; Powell, James E. ; Price, Thomas P. ; Marynick, Dennis S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2518-65192ec84278a9084ecb1d49b078e468d23300c288161b412c161469d6b836ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Biological and medical sciences</topic><topic>Chemical control</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Parasitic plants. Weeds</topic><topic>Phytopathology. Animal pests. Plant and forest protection</topic><topic>Weeds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andrea, Tariq A.</creatorcontrib><creatorcontrib>Stranz, David D.</creatorcontrib><creatorcontrib>Yang, Alex</creatorcontrib><creatorcontrib>Kleier, Daniel A.</creatorcontrib><creatorcontrib>Patel, Kanu M.</creatorcontrib><creatorcontrib>Powell, James E.</creatorcontrib><creatorcontrib>Price, Thomas P.</creatorcontrib><creatorcontrib>Marynick, Dennis S.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>Pesticide Science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andrea, Tariq A.</au><au>Stranz, David D.</au><au>Yang, Alex</au><au>Kleier, Daniel A.</au><au>Patel, Kanu M.</au><au>Powell, James E.</au><au>Price, Thomas P.</au><au>Marynick, Dennis S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational and intramolecular hydrogen bonding effects on post-emergence and pre-emergence selectivities of herbicidal pyrrole dicarboxylates</atitle><jtitle>Pesticide Science</jtitle><addtitle>Pestic. Sci</addtitle><date>1990</date><risdate>1990</risdate><volume>28</volume><issue>1</issue><spage>49</spage><epage>68</epage><pages>49-68</pages><issn>0031-613X</issn><issn>1526-498X</issn><eissn>1096-9063</eissn><coden>PSSCBG</coden><abstract>Dimethyl 2‐methyl‐5‐(chloropyridin‐2‐yl)pyrrole‐3,4‐dicarboxylates in which the chlorine atom is substituted at different positions of the pyridine ring have widely varying biological properties. The 3‐chloro analog (I) is a post‐emergence and pre‐emergence herbicide, the 4‐ and 5‐chloro analogs (II, III) are post‐emergence herbicides but not pre‐emergence, and the 6‐chloro analog (IV) is inactive. Computer graphic and molecular mechanics analyses of their molecular conformations showed that the 4‐ and 5‐chloro analogs adopt a coplanar, intramolecularly hydrogen bonded conformation whereas the 3‐chloro analog does not. High‐level quantum mechanical calculations of the conformational preferences of related model systems were in agreement with these results. Based on this, II and III were predicted to have higher octanol/water partition coefficients relative to I, leading to higher soil binding and weaker xylem transport, hence their observed weaker pre‐emergence activities. Experimental measurements of octanol/water partition coefficients, soil binding, and infrared hydrogen bonding studies verified these predictions. Molecular modeling techniques are usually used for designing compounds to fit enzyme active sites and designing putative receptor models. This study demonstrates the usefulness of these techniques for dealing with transport problems.</abstract><cop>London</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/ps.2780280108</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-613X
ispartof Pesticide Science, 1990, Vol.28 (1), p.49-68
issn 0031-613X
1526-498X
1096-9063
language eng
recordid cdi_proquest_journals_1877108863
source Wiley Online Library Journals Frontfile Complete; Periodicals Index Online
subjects Biological and medical sciences
Chemical control
Fundamental and applied biological sciences. Psychology
Parasitic plants. Weeds
Phytopathology. Animal pests. Plant and forest protection
Weeds
title Conformational and intramolecular hydrogen bonding effects on post-emergence and pre-emergence selectivities of herbicidal pyrrole dicarboxylates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A26%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20and%20intramolecular%20hydrogen%20bonding%20effects%20on%20post-emergence%20and%20pre-emergence%20selectivities%20of%20herbicidal%20pyrrole%20dicarboxylates&rft.jtitle=Pesticide%20Science&rft.au=Andrea,%20Tariq%20A.&rft.date=1990&rft.volume=28&rft.issue=1&rft.spage=49&rft.epage=68&rft.pages=49-68&rft.issn=0031-613X&rft.eissn=1096-9063&rft.coden=PSSCBG&rft_id=info:doi/10.1002/ps.2780280108&rft_dat=%3Cproquest_cross%3E1877108863%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1877108863&rft_id=info:pmid/&rfr_iscdi=true