HFSP: Bringing Size-Based Scheduling To Hadoop

Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and near-optimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex, and widely used system such as Hadoop. Size-based scheduling requires...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cloud computing 2017-01, Vol.5 (1), p.43-56
Hauptverfasser: Pastorelli, Mario, Carra, Damiano, DellAmico, Matteo, Michiardi, Pietro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 56
container_issue 1
container_start_page 43
container_title IEEE transactions on cloud computing
container_volume 5
creator Pastorelli, Mario
Carra, Damiano
DellAmico, Matteo
Michiardi, Pietro
description Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and near-optimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex, and widely used system such as Hadoop. Size-based scheduling requires a priori job size information, which is not available in Hadoop: HFSP builds such knowledge by estimating it on-line during job execution. Our experiments, which are based on realistic workloads generated via a standard benchmarking suite, pinpoint at a significant decrease in system response times with respect to the widely used Hadoop Fair scheduler, without impacting the fairness of the scheduler, and show that HFSP is largely tolerant to job size estimation errors.
doi_str_mv 10.1109/TCC.2015.2396056
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1876614792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7018931</ieee_id><sourcerecordid>1876614792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-6ee327f444e55646a3d726fafc8e9dd45ae949398efb275fdfa3ed331ef736263</originalsourceid><addsrcrecordid>eNpNkM1Lw0AQxRdRsNTeBS8Bz4k7-5n1ZoO1QkGh9bys2VlNqU3dbQ_61zchRRwGZhjeewM_Qq6BFgDU3K2qqmAUZMG4UVSqMzJioMpcg4Lzf_slmaS0pl2VEgyYESnms-XrfTaNzfaj62zZ_GI-dQl9tqw_0R82_XXVZnPn23Z3RS6C2yScnOaYvM0eV9U8X7w8PVcPi7wWlO9zhciZDkIIlFIJ5bjXTAUX6hKN90I6NMJwU2J4Z1oGHxxHzzlg0Fwxxcfkdsjdxfb7gGlv1-0hbruXFkqtFAhtWKeig6qObUoRg93F5svFHwvU9mBsB8b2YOwJTGe5GSwNIv7JNYXScOBHRHVb7w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876614792</pqid></control><display><type>article</type><title>HFSP: Bringing Size-Based Scheduling To Hadoop</title><source>IEEE Electronic Library (IEL)</source><creator>Pastorelli, Mario ; Carra, Damiano ; DellAmico, Matteo ; Michiardi, Pietro</creator><creatorcontrib>Pastorelli, Mario ; Carra, Damiano ; DellAmico, Matteo ; Michiardi, Pietro</creatorcontrib><description>Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and near-optimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex, and widely used system such as Hadoop. Size-based scheduling requires a priori job size information, which is not available in Hadoop: HFSP builds such knowledge by estimating it on-line during job execution. Our experiments, which are based on realistic workloads generated via a standard benchmarking suite, pinpoint at a significant decrease in system response times with respect to the widely used Hadoop Fair scheduler, without impacting the fairness of the scheduler, and show that HFSP is largely tolerant to job size estimation errors.</description><identifier>ISSN: 2168-7161</identifier><identifier>EISSN: 2168-7161</identifier><identifier>EISSN: 2372-0018</identifier><identifier>DOI: 10.1109/TCC.2015.2396056</identifier><identifier>CODEN: ITCCF6</identifier><language>eng</language><publisher>Piscataway: IEEE Computer Society</publisher><subject>Aging ; Batch processing ; Cloud computing ; data analysis ; Estimation ; MapReduce ; Processor scheduling ; Scheduling ; Silicon ; Time factors ; Training</subject><ispartof>IEEE transactions on cloud computing, 2017-01, Vol.5 (1), p.43-56</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-6ee327f444e55646a3d726fafc8e9dd45ae949398efb275fdfa3ed331ef736263</citedby><cites>FETCH-LOGICAL-c403t-6ee327f444e55646a3d726fafc8e9dd45ae949398efb275fdfa3ed331ef736263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7018931$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7018931$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pastorelli, Mario</creatorcontrib><creatorcontrib>Carra, Damiano</creatorcontrib><creatorcontrib>DellAmico, Matteo</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><title>HFSP: Bringing Size-Based Scheduling To Hadoop</title><title>IEEE transactions on cloud computing</title><addtitle>TCC</addtitle><description>Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and near-optimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex, and widely used system such as Hadoop. Size-based scheduling requires a priori job size information, which is not available in Hadoop: HFSP builds such knowledge by estimating it on-line during job execution. Our experiments, which are based on realistic workloads generated via a standard benchmarking suite, pinpoint at a significant decrease in system response times with respect to the widely used Hadoop Fair scheduler, without impacting the fairness of the scheduler, and show that HFSP is largely tolerant to job size estimation errors.</description><subject>Aging</subject><subject>Batch processing</subject><subject>Cloud computing</subject><subject>data analysis</subject><subject>Estimation</subject><subject>MapReduce</subject><subject>Processor scheduling</subject><subject>Scheduling</subject><subject>Silicon</subject><subject>Time factors</subject><subject>Training</subject><issn>2168-7161</issn><issn>2168-7161</issn><issn>2372-0018</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1Lw0AQxRdRsNTeBS8Bz4k7-5n1ZoO1QkGh9bys2VlNqU3dbQ_61zchRRwGZhjeewM_Qq6BFgDU3K2qqmAUZMG4UVSqMzJioMpcg4Lzf_slmaS0pl2VEgyYESnms-XrfTaNzfaj62zZ_GI-dQl9tqw_0R82_XXVZnPn23Z3RS6C2yScnOaYvM0eV9U8X7w8PVcPi7wWlO9zhciZDkIIlFIJ5bjXTAUX6hKN90I6NMJwU2J4Z1oGHxxHzzlg0Fwxxcfkdsjdxfb7gGlv1-0hbruXFkqtFAhtWKeig6qObUoRg93F5svFHwvU9mBsB8b2YOwJTGe5GSwNIv7JNYXScOBHRHVb7w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Pastorelli, Mario</creator><creator>Carra, Damiano</creator><creator>DellAmico, Matteo</creator><creator>Michiardi, Pietro</creator><general>IEEE Computer Society</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170101</creationdate><title>HFSP: Bringing Size-Based Scheduling To Hadoop</title><author>Pastorelli, Mario ; Carra, Damiano ; DellAmico, Matteo ; Michiardi, Pietro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-6ee327f444e55646a3d726fafc8e9dd45ae949398efb275fdfa3ed331ef736263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aging</topic><topic>Batch processing</topic><topic>Cloud computing</topic><topic>data analysis</topic><topic>Estimation</topic><topic>MapReduce</topic><topic>Processor scheduling</topic><topic>Scheduling</topic><topic>Silicon</topic><topic>Time factors</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pastorelli, Mario</creatorcontrib><creatorcontrib>Carra, Damiano</creatorcontrib><creatorcontrib>DellAmico, Matteo</creatorcontrib><creatorcontrib>Michiardi, Pietro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on cloud computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pastorelli, Mario</au><au>Carra, Damiano</au><au>DellAmico, Matteo</au><au>Michiardi, Pietro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>HFSP: Bringing Size-Based Scheduling To Hadoop</atitle><jtitle>IEEE transactions on cloud computing</jtitle><stitle>TCC</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>5</volume><issue>1</issue><spage>43</spage><epage>56</epage><pages>43-56</pages><issn>2168-7161</issn><eissn>2168-7161</eissn><eissn>2372-0018</eissn><coden>ITCCF6</coden><abstract>Size-based scheduling with aging has been recognized as an effective approach to guarantee fairness and near-optimal system response times. We present HFSP, a scheduler introducing this technique to a real, multi-server, complex, and widely used system such as Hadoop. Size-based scheduling requires a priori job size information, which is not available in Hadoop: HFSP builds such knowledge by estimating it on-line during job execution. Our experiments, which are based on realistic workloads generated via a standard benchmarking suite, pinpoint at a significant decrease in system response times with respect to the widely used Hadoop Fair scheduler, without impacting the fairness of the scheduler, and show that HFSP is largely tolerant to job size estimation errors.</abstract><cop>Piscataway</cop><pub>IEEE Computer Society</pub><doi>10.1109/TCC.2015.2396056</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-7161
ispartof IEEE transactions on cloud computing, 2017-01, Vol.5 (1), p.43-56
issn 2168-7161
2168-7161
2372-0018
language eng
recordid cdi_proquest_journals_1876614792
source IEEE Electronic Library (IEL)
subjects Aging
Batch processing
Cloud computing
data analysis
Estimation
MapReduce
Processor scheduling
Scheduling
Silicon
Time factors
Training
title HFSP: Bringing Size-Based Scheduling To Hadoop
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T00%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=HFSP:%20Bringing%20Size-Based%20Scheduling%20To%20Hadoop&rft.jtitle=IEEE%20transactions%20on%20cloud%20computing&rft.au=Pastorelli,%20Mario&rft.date=2017-01-01&rft.volume=5&rft.issue=1&rft.spage=43&rft.epage=56&rft.pages=43-56&rft.issn=2168-7161&rft.eissn=2168-7161&rft.coden=ITCCF6&rft_id=info:doi/10.1109/TCC.2015.2396056&rft_dat=%3Cproquest_RIE%3E1876614792%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876614792&rft_id=info:pmid/&rft_ieee_id=7018931&rfr_iscdi=true