Microwave synthesis of metal doped TiO2 for photocatalytic applications
Nanostructured metal (Sn, Cu and Ni) doped TiO 2 was successfully synthesized by microwave irradiation method. Metal doped TiO 2 was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis). The XRD...
Gespeichert in:
Veröffentlicht in: | Journal of materials science. Materials in electronics 2017-04, Vol.28 (7), p.5281-5287 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5287 |
---|---|
container_issue | 7 |
container_start_page | 5281 |
container_title | Journal of materials science. Materials in electronics |
container_volume | 28 |
creator | Maragatha, J. Rajendran, S. Endo, T. Karuppuchamy, S. |
description | Nanostructured metal (Sn, Cu and Ni) doped TiO
2
was successfully synthesized by microwave irradiation method. Metal doped TiO
2
was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis). The XRD pattern confirms the formation of monoclinic phase TiO
2
and metal doped TiO
2
samples. SEM images show the attractive morphologies for metal doped TiO
2
nanopowders. The photocatalytic activity of the synthesized sample was also studied by the decomposition of methylene blue dye under UV light irradiation. |
doi_str_mv | 10.1007/s10854-016-6185-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1876140239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4320197531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-10748b61483475182b96fc2967e918f0660e0342dbd5234c5e632b6357e46ef3</originalsourceid><addsrcrecordid>eNp1kDtPAzEQhC0EEiHwA-gsURvWb1-JIghIQWmuoLPu4SOOkvNhX0D59zg6Chqq1WpnZjUfQrcU7imAfkgUjBQEqCKKGkn0GZpRqTkRhr2foxkUUhMhGbtEVyltAUAJbmZo-eabGL6rL4fTsR83LvmEQ4f3bqx2uA2Da3Hp1wx3IeJhE8bQVPlyHH2Dq2HY-bz60KdrdNFVu-Rufucclc9P5eKFrNbL18XjijRc8pFQ0MLUigrDhZbUsLpQXcMKpV1BTQdKgQMuWFu3knHRSKc4qxWX2gnlOj5Hd1PsEMPnwaXRbsMh9vmjpUbnXGC8yCo6qXK1lKLr7BD9vopHS8GecNkJl8247AmX1dnDJk_K2v7DxT_J_5p-AGdIa-o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876140239</pqid></control><display><type>article</type><title>Microwave synthesis of metal doped TiO2 for photocatalytic applications</title><source>SpringerLink Journals</source><creator>Maragatha, J. ; Rajendran, S. ; Endo, T. ; Karuppuchamy, S.</creator><creatorcontrib>Maragatha, J. ; Rajendran, S. ; Endo, T. ; Karuppuchamy, S.</creatorcontrib><description>Nanostructured metal (Sn, Cu and Ni) doped TiO
2
was successfully synthesized by microwave irradiation method. Metal doped TiO
2
was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis). The XRD pattern confirms the formation of monoclinic phase TiO
2
and metal doped TiO
2
samples. SEM images show the attractive morphologies for metal doped TiO
2
nanopowders. The photocatalytic activity of the synthesized sample was also studied by the decomposition of methylene blue dye under UV light irradiation.</description><identifier>ISSN: 0957-4522</identifier><identifier>EISSN: 1573-482X</identifier><identifier>DOI: 10.1007/s10854-016-6185-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Materials Science ; Optical and Electronic Materials</subject><ispartof>Journal of materials science. Materials in electronics, 2017-04, Vol.28 (7), p.5281-5287</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Journal of Materials Science: Materials in Electronics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-10748b61483475182b96fc2967e918f0660e0342dbd5234c5e632b6357e46ef3</citedby><cites>FETCH-LOGICAL-c353t-10748b61483475182b96fc2967e918f0660e0342dbd5234c5e632b6357e46ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10854-016-6185-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10854-016-6185-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Maragatha, J.</creatorcontrib><creatorcontrib>Rajendran, S.</creatorcontrib><creatorcontrib>Endo, T.</creatorcontrib><creatorcontrib>Karuppuchamy, S.</creatorcontrib><title>Microwave synthesis of metal doped TiO2 for photocatalytic applications</title><title>Journal of materials science. Materials in electronics</title><addtitle>J Mater Sci: Mater Electron</addtitle><description>Nanostructured metal (Sn, Cu and Ni) doped TiO
2
was successfully synthesized by microwave irradiation method. Metal doped TiO
2
was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis). The XRD pattern confirms the formation of monoclinic phase TiO
2
and metal doped TiO
2
samples. SEM images show the attractive morphologies for metal doped TiO
2
nanopowders. The photocatalytic activity of the synthesized sample was also studied by the decomposition of methylene blue dye under UV light irradiation.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Materials Science</subject><subject>Optical and Electronic Materials</subject><issn>0957-4522</issn><issn>1573-482X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp1kDtPAzEQhC0EEiHwA-gsURvWb1-JIghIQWmuoLPu4SOOkvNhX0D59zg6Chqq1WpnZjUfQrcU7imAfkgUjBQEqCKKGkn0GZpRqTkRhr2foxkUUhMhGbtEVyltAUAJbmZo-eabGL6rL4fTsR83LvmEQ4f3bqx2uA2Da3Hp1wx3IeJhE8bQVPlyHH2Dq2HY-bz60KdrdNFVu-Rufucclc9P5eKFrNbL18XjijRc8pFQ0MLUigrDhZbUsLpQXcMKpV1BTQdKgQMuWFu3knHRSKc4qxWX2gnlOj5Hd1PsEMPnwaXRbsMh9vmjpUbnXGC8yCo6qXK1lKLr7BD9vopHS8GecNkJl8247AmX1dnDJk_K2v7DxT_J_5p-AGdIa-o</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Maragatha, J.</creator><creator>Rajendran, S.</creator><creator>Endo, T.</creator><creator>Karuppuchamy, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0W</scope></search><sort><creationdate>20170401</creationdate><title>Microwave synthesis of metal doped TiO2 for photocatalytic applications</title><author>Maragatha, J. ; Rajendran, S. ; Endo, T. ; Karuppuchamy, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-10748b61483475182b96fc2967e918f0660e0342dbd5234c5e632b6357e46ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Materials Science</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maragatha, J.</creatorcontrib><creatorcontrib>Rajendran, S.</creatorcontrib><creatorcontrib>Endo, T.</creatorcontrib><creatorcontrib>Karuppuchamy, S.</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials science. Materials in electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maragatha, J.</au><au>Rajendran, S.</au><au>Endo, T.</au><au>Karuppuchamy, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microwave synthesis of metal doped TiO2 for photocatalytic applications</atitle><jtitle>Journal of materials science. Materials in electronics</jtitle><stitle>J Mater Sci: Mater Electron</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>28</volume><issue>7</issue><spage>5281</spage><epage>5287</epage><pages>5281-5287</pages><issn>0957-4522</issn><eissn>1573-482X</eissn><abstract>Nanostructured metal (Sn, Cu and Ni) doped TiO
2
was successfully synthesized by microwave irradiation method. Metal doped TiO
2
was characterized by X-ray diffraction (XRD), Scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR) and UV–Vis spectroscopy (UV–Vis). The XRD pattern confirms the formation of monoclinic phase TiO
2
and metal doped TiO
2
samples. SEM images show the attractive morphologies for metal doped TiO
2
nanopowders. The photocatalytic activity of the synthesized sample was also studied by the decomposition of methylene blue dye under UV light irradiation.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10854-016-6185-7</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0957-4522 |
ispartof | Journal of materials science. Materials in electronics, 2017-04, Vol.28 (7), p.5281-5287 |
issn | 0957-4522 1573-482X |
language | eng |
recordid | cdi_proquest_journals_1876140239 |
source | SpringerLink Journals |
subjects | Characterization and Evaluation of Materials Chemistry and Materials Science Materials Science Optical and Electronic Materials |
title | Microwave synthesis of metal doped TiO2 for photocatalytic applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T07%3A21%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microwave%20synthesis%20of%20metal%20doped%20TiO2%20for%20photocatalytic%20applications&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20electronics&rft.au=Maragatha,%20J.&rft.date=2017-04-01&rft.volume=28&rft.issue=7&rft.spage=5281&rft.epage=5287&rft.pages=5281-5287&rft.issn=0957-4522&rft.eissn=1573-482X&rft_id=info:doi/10.1007/s10854-016-6185-7&rft_dat=%3Cproquest_cross%3E4320197531%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876140239&rft_id=info:pmid/&rfr_iscdi=true |