Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes

Agrobacterium-mediated transformation was used to introduce pathogenesis-related protein genes into scutellum-derived callus of rice (Oryza sativa L. subsp. indica 'White Ponni') as a means of increasing resistance to sheath blight disease caused by Rhizoctonia solani Kühn. Transformation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:In vitro cellular & developmental biology. Plant 2017-02, Vol.53 (1), p.12-21
Hauptverfasser: Sripriya, Rajasekaran, Parameswari, Chidambaram, Veluthambi, Karuppannan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21
container_issue 1
container_start_page 12
container_title In vitro cellular & developmental biology. Plant
container_volume 53
creator Sripriya, Rajasekaran
Parameswari, Chidambaram
Veluthambi, Karuppannan
description Agrobacterium-mediated transformation was used to introduce pathogenesis-related protein genes into scutellum-derived callus of rice (Oryza sativa L. subsp. indica 'White Ponni') as a means of increasing resistance to sheath blight disease caused by Rhizoctonia solani Kühn. Transformation with a tobacco osmotin (ap24) gene driven by the Cauliflower mosaic virus 35S promoter (P35S) yielded six single-copy transgenic lines. Homozygous T2 plants of all lines accumulated high levels of the ap24 transcript and the osmotin protein and reduced the percent disease index (PDI) of sheath blight disease from 100% down to 49–77%. Transformation with the binary plasmid pNSP2, which harbored the P35S-ap24 gene and a maize ubiquitin promoter (PUbi1)-driven rice chitinase (chi11) gene in the same T-DNA, yielded three single-copy transgenic lines: CO1, CO2, and CO3. Homozygous T2 plants of all three lines accumulated high levels of the chi11 transcript and the chitinase protein. Accumulation of ap24 transcript and osmotin protein was high in homozygous CO1 and CO2, but very low in CO3. At 7 d post infection with R. solani, the transgenic rice lines C18a (with chi11 alone), O8 (with ap24 alone), and CO1, CO2, and CO3 (with chi11 + ap24) reduced the sheath blight PDI from 100% to 64.2, 57.2, 43.3, 50.2, and 58.6%, respectively. At 15 d post infection, the sheath blight disease PDI was significantly lower in the CO1 and CO2 transgenic rice lines, which expressed both chi11 and ap24, than in those which expressed either chi11 or ap24 individually.
doi_str_mv 10.1007/s11627-017-9807-8
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1876032451</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26588857</jstor_id><sourcerecordid>26588857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-684d861ace0c5a3bf13a3b50e9eff5b6f2848afdff34fc356a8ee61d3eb0ea113</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYso-PwB7gIi6KKa2zyaWYr4AsGNrkOa3kw7zCRjEkF_g3_alLpw5SY53Hu-c-FU1SnQK6C0vU4AsmlrCm29ULSt1U51ALwVdSPVYrdoKngteCv3q8OUVpRSKN6D6vvOD8Zb3KDPJDiSBjR5IN16XA6Z5LDGOK3J6EkuKi3Rj5bEsYy6L2LDphs99gQ_txFTGoOfQnLojLWBhLQJuZAXZtvwS2J8P5N2GMvYJCQXRQJckhKL6bjac2ad8OT3P6re7u9ebx_r55eHp9ub59oyLnMtFe-VBGORWmFY54CVV1BcoHOik65RXBnXO8e4s0xIoxAl9Aw7igaAHVVnc-42hvcPTFmvwkf05aQG1UrKGi4mF8wuG0NKEZ3exnFj4pcGqqfO9dy5Lj3qqXOtCtPMTCpev8T4J_kf6HyGVimH-PdKw4qhkUIpJVr2A7UokbU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1876032451</pqid></control><display><type>article</type><title>Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes</title><source>JSTOR Archive Collection A-Z Listing</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sripriya, Rajasekaran ; Parameswari, Chidambaram ; Veluthambi, Karuppannan</creator><creatorcontrib>Sripriya, Rajasekaran ; Parameswari, Chidambaram ; Veluthambi, Karuppannan</creatorcontrib><description>Agrobacterium-mediated transformation was used to introduce pathogenesis-related protein genes into scutellum-derived callus of rice (Oryza sativa L. subsp. indica 'White Ponni') as a means of increasing resistance to sheath blight disease caused by Rhizoctonia solani Kühn. Transformation with a tobacco osmotin (ap24) gene driven by the Cauliflower mosaic virus 35S promoter (P35S) yielded six single-copy transgenic lines. Homozygous T2 plants of all lines accumulated high levels of the ap24 transcript and the osmotin protein and reduced the percent disease index (PDI) of sheath blight disease from 100% down to 49–77%. Transformation with the binary plasmid pNSP2, which harbored the P35S-ap24 gene and a maize ubiquitin promoter (PUbi1)-driven rice chitinase (chi11) gene in the same T-DNA, yielded three single-copy transgenic lines: CO1, CO2, and CO3. Homozygous T2 plants of all three lines accumulated high levels of the chi11 transcript and the chitinase protein. Accumulation of ap24 transcript and osmotin protein was high in homozygous CO1 and CO2, but very low in CO3. At 7 d post infection with R. solani, the transgenic rice lines C18a (with chi11 alone), O8 (with ap24 alone), and CO1, CO2, and CO3 (with chi11 + ap24) reduced the sheath blight PDI from 100% to 64.2, 57.2, 43.3, 50.2, and 58.6%, respectively. At 15 d post infection, the sheath blight disease PDI was significantly lower in the CO1 and CO2 transgenic rice lines, which expressed both chi11 and ap24, than in those which expressed either chi11 or ap24 individually.</description><identifier>ISSN: 1054-5476</identifier><identifier>EISSN: 1475-2689</identifier><identifier>DOI: 10.1007/s11627-017-9807-8</identifier><language>eng</language><publisher>New York: Springer Science + Business Media, LLC (Springer)</publisher><subject>Biomedical and Life Sciences ; Carbon dioxide ; Cell Biology ; Chitinase ; Cloning ; Deoxyribonucleic acid ; Developmental Biology ; DNA ; Fungi ; Genes ; Genetic engineering ; GENETIC TRANSFORMATION ; Life Sciences ; Plant Breeding/Biotechnology ; Plant Genetics and Genomics ; Plant Sciences ; Potatoes ; Proteins ; Tobacco ; Transgenic plants</subject><ispartof>In vitro cellular &amp; developmental biology. Plant, 2017-02, Vol.53 (1), p.12-21</ispartof><rights>2017 Society for In Vitro Biology</rights><rights>The Society for In Vitro Biology 2017</rights><rights>Copyright Society for In Vitro Biology Feb 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-684d861ace0c5a3bf13a3b50e9eff5b6f2848afdff34fc356a8ee61d3eb0ea113</citedby><cites>FETCH-LOGICAL-c346t-684d861ace0c5a3bf13a3b50e9eff5b6f2848afdff34fc356a8ee61d3eb0ea113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26588857$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26588857$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27923,27924,41487,42556,51318,58016,58249</link.rule.ids></links><search><creatorcontrib>Sripriya, Rajasekaran</creatorcontrib><creatorcontrib>Parameswari, Chidambaram</creatorcontrib><creatorcontrib>Veluthambi, Karuppannan</creatorcontrib><title>Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes</title><title>In vitro cellular &amp; developmental biology. Plant</title><addtitle>In Vitro Cell.Dev.Biol.-Plant</addtitle><description>Agrobacterium-mediated transformation was used to introduce pathogenesis-related protein genes into scutellum-derived callus of rice (Oryza sativa L. subsp. indica 'White Ponni') as a means of increasing resistance to sheath blight disease caused by Rhizoctonia solani Kühn. Transformation with a tobacco osmotin (ap24) gene driven by the Cauliflower mosaic virus 35S promoter (P35S) yielded six single-copy transgenic lines. Homozygous T2 plants of all lines accumulated high levels of the ap24 transcript and the osmotin protein and reduced the percent disease index (PDI) of sheath blight disease from 100% down to 49–77%. Transformation with the binary plasmid pNSP2, which harbored the P35S-ap24 gene and a maize ubiquitin promoter (PUbi1)-driven rice chitinase (chi11) gene in the same T-DNA, yielded three single-copy transgenic lines: CO1, CO2, and CO3. Homozygous T2 plants of all three lines accumulated high levels of the chi11 transcript and the chitinase protein. Accumulation of ap24 transcript and osmotin protein was high in homozygous CO1 and CO2, but very low in CO3. At 7 d post infection with R. solani, the transgenic rice lines C18a (with chi11 alone), O8 (with ap24 alone), and CO1, CO2, and CO3 (with chi11 + ap24) reduced the sheath blight PDI from 100% to 64.2, 57.2, 43.3, 50.2, and 58.6%, respectively. At 15 d post infection, the sheath blight disease PDI was significantly lower in the CO1 and CO2 transgenic rice lines, which expressed both chi11 and ap24, than in those which expressed either chi11 or ap24 individually.</description><subject>Biomedical and Life Sciences</subject><subject>Carbon dioxide</subject><subject>Cell Biology</subject><subject>Chitinase</subject><subject>Cloning</subject><subject>Deoxyribonucleic acid</subject><subject>Developmental Biology</subject><subject>DNA</subject><subject>Fungi</subject><subject>Genes</subject><subject>Genetic engineering</subject><subject>GENETIC TRANSFORMATION</subject><subject>Life Sciences</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Potatoes</subject><subject>Proteins</subject><subject>Tobacco</subject><subject>Transgenic plants</subject><issn>1054-5476</issn><issn>1475-2689</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kEtLxDAUhYso-PwB7gIi6KKa2zyaWYr4AsGNrkOa3kw7zCRjEkF_g3_alLpw5SY53Hu-c-FU1SnQK6C0vU4AsmlrCm29ULSt1U51ALwVdSPVYrdoKngteCv3q8OUVpRSKN6D6vvOD8Zb3KDPJDiSBjR5IN16XA6Z5LDGOK3J6EkuKi3Rj5bEsYy6L2LDphs99gQ_txFTGoOfQnLojLWBhLQJuZAXZtvwS2J8P5N2GMvYJCQXRQJckhKL6bjac2ad8OT3P6re7u9ebx_r55eHp9ub59oyLnMtFe-VBGORWmFY54CVV1BcoHOik65RXBnXO8e4s0xIoxAl9Aw7igaAHVVnc-42hvcPTFmvwkf05aQG1UrKGi4mF8wuG0NKEZ3exnFj4pcGqqfO9dy5Lj3qqXOtCtPMTCpev8T4J_kf6HyGVimH-PdKw4qhkUIpJVr2A7UokbU</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Sripriya, Rajasekaran</creator><creator>Parameswari, Chidambaram</creator><creator>Veluthambi, Karuppannan</creator><general>Springer Science + Business Media, LLC (Springer)</general><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170201</creationdate><title>Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes</title><author>Sripriya, Rajasekaran ; Parameswari, Chidambaram ; Veluthambi, Karuppannan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-684d861ace0c5a3bf13a3b50e9eff5b6f2848afdff34fc356a8ee61d3eb0ea113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomedical and Life Sciences</topic><topic>Carbon dioxide</topic><topic>Cell Biology</topic><topic>Chitinase</topic><topic>Cloning</topic><topic>Deoxyribonucleic acid</topic><topic>Developmental Biology</topic><topic>DNA</topic><topic>Fungi</topic><topic>Genes</topic><topic>Genetic engineering</topic><topic>GENETIC TRANSFORMATION</topic><topic>Life Sciences</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Potatoes</topic><topic>Proteins</topic><topic>Tobacco</topic><topic>Transgenic plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sripriya, Rajasekaran</creatorcontrib><creatorcontrib>Parameswari, Chidambaram</creatorcontrib><creatorcontrib>Veluthambi, Karuppannan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>In vitro cellular &amp; developmental biology. Plant</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sripriya, Rajasekaran</au><au>Parameswari, Chidambaram</au><au>Veluthambi, Karuppannan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes</atitle><jtitle>In vitro cellular &amp; developmental biology. Plant</jtitle><stitle>In Vitro Cell.Dev.Biol.-Plant</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>53</volume><issue>1</issue><spage>12</spage><epage>21</epage><pages>12-21</pages><issn>1054-5476</issn><eissn>1475-2689</eissn><abstract>Agrobacterium-mediated transformation was used to introduce pathogenesis-related protein genes into scutellum-derived callus of rice (Oryza sativa L. subsp. indica 'White Ponni') as a means of increasing resistance to sheath blight disease caused by Rhizoctonia solani Kühn. Transformation with a tobacco osmotin (ap24) gene driven by the Cauliflower mosaic virus 35S promoter (P35S) yielded six single-copy transgenic lines. Homozygous T2 plants of all lines accumulated high levels of the ap24 transcript and the osmotin protein and reduced the percent disease index (PDI) of sheath blight disease from 100% down to 49–77%. Transformation with the binary plasmid pNSP2, which harbored the P35S-ap24 gene and a maize ubiquitin promoter (PUbi1)-driven rice chitinase (chi11) gene in the same T-DNA, yielded three single-copy transgenic lines: CO1, CO2, and CO3. Homozygous T2 plants of all three lines accumulated high levels of the chi11 transcript and the chitinase protein. Accumulation of ap24 transcript and osmotin protein was high in homozygous CO1 and CO2, but very low in CO3. At 7 d post infection with R. solani, the transgenic rice lines C18a (with chi11 alone), O8 (with ap24 alone), and CO1, CO2, and CO3 (with chi11 + ap24) reduced the sheath blight PDI from 100% to 64.2, 57.2, 43.3, 50.2, and 58.6%, respectively. At 15 d post infection, the sheath blight disease PDI was significantly lower in the CO1 and CO2 transgenic rice lines, which expressed both chi11 and ap24, than in those which expressed either chi11 or ap24 individually.</abstract><cop>New York</cop><pub>Springer Science + Business Media, LLC (Springer)</pub><doi>10.1007/s11627-017-9807-8</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-5476
ispartof In vitro cellular & developmental biology. Plant, 2017-02, Vol.53 (1), p.12-21
issn 1054-5476
1475-2689
language eng
recordid cdi_proquest_journals_1876032451
source JSTOR Archive Collection A-Z Listing; SpringerLink Journals - AutoHoldings
subjects Biomedical and Life Sciences
Carbon dioxide
Cell Biology
Chitinase
Cloning
Deoxyribonucleic acid
Developmental Biology
DNA
Fungi
Genes
Genetic engineering
GENETIC TRANSFORMATION
Life Sciences
Plant Breeding/Biotechnology
Plant Genetics and Genomics
Plant Sciences
Potatoes
Proteins
Tobacco
Transgenic plants
title Enhancement of sheath blight tolerance in transgenic rice by combined expression of tobacco osmotin (ap24) and rice chitinase (chi11) genes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T21%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancement%20of%20sheath%20blight%20tolerance%20in%20transgenic%20rice%20by%20combined%20expression%20of%20tobacco%20osmotin%20(ap24)%20and%20rice%20chitinase%20(chi11)%20genes&rft.jtitle=In%20vitro%20cellular%20&%20developmental%20biology.%20Plant&rft.au=Sripriya,%20Rajasekaran&rft.date=2017-02-01&rft.volume=53&rft.issue=1&rft.spage=12&rft.epage=21&rft.pages=12-21&rft.issn=1054-5476&rft.eissn=1475-2689&rft_id=info:doi/10.1007/s11627-017-9807-8&rft_dat=%3Cjstor_proqu%3E26588857%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1876032451&rft_id=info:pmid/&rft_jstor_id=26588857&rfr_iscdi=true