The connected detour monophonic number of a graph

THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH P. TITUS, A.P. SANTHAKUMARAN, K. GANESAMOORTHY [PDF] Abstract For a connected graph G = (V;E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:TWMS journal of applied and engineering mathematics 2016-01, Vol.6 (1), p.75
Hauptverfasser: Titus, P, Santhakumaran, A.P, Ganesamoorthy, K
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 75
container_title TWMS journal of applied and engineering mathematics
container_volume 6
creator Titus, P
Santhakumaran, A.P
Ganesamoorthy, K
description THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH P. TITUS, A.P. SANTHAKUMARAN, K. GANESAMOORTHY [PDF] Abstract For a connected graph G = (V;E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1875396133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A486284416</galeid><sourcerecordid>A486284416</sourcerecordid><originalsourceid>FETCH-LOGICAL-g180t-e329e66eee5e470e2ef430ba90a80795b6f79afd1ed2a0ca9f3e1e388a5ca4a83</originalsourceid><addsrcrecordid>eNptj8lqw0AMhofSQkOadxjo2WU2z3IMoRsEeknPRh5rbId4xvXy_h1ooTlU_0FCfPol3ZCN4EoXnCtze1Xfk908n1kOq7VhckP4qUPqU4zoF2xog0taJzqkmMYuxd7TuA41TjQFCrSdYOweyF2Ay4y737wlny_Pp8Nbcfx4fT_sj0XLLVsKlMKh1ohYojIMBQYlWQ2OgWXGlbUOxkFoODYCmAcXJHKU1kLpQYGVW_L44ztO6WvFeanO-bSYV1bcmlI6zaX8o1q4YNXHkJYJ_NDPvtorq4VViutMPf1DZTU49Pl7DH3uXw18A9dJXTU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875396133</pqid></control><display><type>article</type><title>The connected detour monophonic number of a graph</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Titus, P ; Santhakumaran, A.P ; Ganesamoorthy, K</creator><creatorcontrib>Titus, P ; Santhakumaran, A.P ; Ganesamoorthy, K</creatorcontrib><description>THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH P. TITUS, A.P. SANTHAKUMARAN, K. GANESAMOORTHY [PDF] Abstract For a connected graph G = (V;E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x</description><identifier>ISSN: 2146-1147</identifier><identifier>EISSN: 2146-1147</identifier><language>eng</language><publisher>Istanbul: Turkic World Mathematical Society</publisher><ispartof>TWMS journal of applied and engineering mathematics, 2016-01, Vol.6 (1), p.75</ispartof><rights>COPYRIGHT 2016 Turkic World Mathematical Society</rights><rights>Copyright Elman Hasanoglu 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Titus, P</creatorcontrib><creatorcontrib>Santhakumaran, A.P</creatorcontrib><creatorcontrib>Ganesamoorthy, K</creatorcontrib><title>The connected detour monophonic number of a graph</title><title>TWMS journal of applied and engineering mathematics</title><description>THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH P. TITUS, A.P. SANTHAKUMARAN, K. GANESAMOORTHY [PDF] Abstract For a connected graph G = (V;E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x</description><issn>2146-1147</issn><issn>2146-1147</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptj8lqw0AMhofSQkOadxjo2WU2z3IMoRsEeknPRh5rbId4xvXy_h1ooTlU_0FCfPol3ZCN4EoXnCtze1Xfk908n1kOq7VhckP4qUPqU4zoF2xog0taJzqkmMYuxd7TuA41TjQFCrSdYOweyF2Ay4y737wlny_Pp8Nbcfx4fT_sj0XLLVsKlMKh1ohYojIMBQYlWQ2OgWXGlbUOxkFoODYCmAcXJHKU1kLpQYGVW_L44ztO6WvFeanO-bSYV1bcmlI6zaX8o1q4YNXHkJYJ_NDPvtorq4VViutMPf1DZTU49Pl7DH3uXw18A9dJXTU</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Titus, P</creator><creator>Santhakumaran, A.P</creator><creator>Ganesamoorthy, K</creator><general>Turkic World Mathematical Society</general><general>Elman Hasanoglu</general><scope>3V.</scope><scope>7TB</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>EDSIH</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20160101</creationdate><title>The connected detour monophonic number of a graph</title><author>Titus, P ; Santhakumaran, A.P ; Ganesamoorthy, K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g180t-e329e66eee5e470e2ef430ba90a80795b6f79afd1ed2a0ca9f3e1e388a5ca4a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Titus, P</creatorcontrib><creatorcontrib>Santhakumaran, A.P</creatorcontrib><creatorcontrib>Ganesamoorthy, K</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Turkey Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest research library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>TWMS journal of applied and engineering mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Titus, P</au><au>Santhakumaran, A.P</au><au>Ganesamoorthy, K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The connected detour monophonic number of a graph</atitle><jtitle>TWMS journal of applied and engineering mathematics</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>6</volume><issue>1</issue><spage>75</spage><pages>75-</pages><issn>2146-1147</issn><eissn>2146-1147</eissn><abstract>THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH THE CONNECTED DETOUR MONOPHONIC NUMBER OF A GRAPH P. TITUS, A.P. SANTHAKUMARAN, K. GANESAMOORTHY [PDF] Abstract For a connected graph G = (V;E) of order at least two, a chord of a path P is an edge joining two non-adjacent vertices of P. A path P is called a monophonic path if it is a chordless path. A longest x</abstract><cop>Istanbul</cop><pub>Turkic World Mathematical Society</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2146-1147
ispartof TWMS journal of applied and engineering mathematics, 2016-01, Vol.6 (1), p.75
issn 2146-1147
2146-1147
language eng
recordid cdi_proquest_journals_1875396133
source EZB-FREE-00999 freely available EZB journals
title The connected detour monophonic number of a graph
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A09%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20connected%20detour%20monophonic%20number%20of%20a%20graph&rft.jtitle=TWMS%20journal%20of%20applied%20and%20engineering%20mathematics&rft.au=Titus,%20P&rft.date=2016-01-01&rft.volume=6&rft.issue=1&rft.spage=75&rft.pages=75-&rft.issn=2146-1147&rft.eissn=2146-1147&rft_id=info:doi/&rft_dat=%3Cgale_proqu%3EA486284416%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875396133&rft_id=info:pmid/&rft_galeid=A486284416&rfr_iscdi=true