Automated content analysis and crisis communication research
•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question relate...
Gespeichert in:
Veröffentlicht in: | Public relations review 2016-12, Vol.42 (5), p.952-961 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 961 |
---|---|
container_issue | 5 |
container_start_page | 952 |
container_title | Public relations review |
container_volume | 42 |
creator | van der Meer, Toni G.L.A. |
description | •This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research.
Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication. |
doi_str_mv | 10.1016/j.pubrev.2016.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1875358302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0363811116300212</els_id><sourcerecordid>4319745921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpmn_oIdAz3ZXVmTLUAqh9AWBXnIXsrSiMrGVSnIgf18F99zTzi4zw84Qck-hpEDrx748TF3AY1nlrYS2BKAXZEFFw4o1Z80lWQCrWSEopdfkJsYeAHhL-YI8babkB5XQrLQfE45ppUa1P0UXM8jH4M5Q-2GYRqdVcn5cBYyogv6-JVdW7SPe_c0l2b297l4-iu3X--fLZltoJiAVtGuQq9q2QgFr26YzpqmosYpaAbRTSgjO7Vp3Vcdtaw0aMK2CipkaKy7YkjzMtofgfyaMSfZ-CvnLKHNEzjIlk5dkPbN08DEGtPIQ3KDCSVKQ55pkL-ea5LkmCa3MNWXZ8yzDHODoMMioHY4ajQuokzTe_W_wC2ZCc6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875358302</pqid></control><display><type>article</type><title>Automated content analysis and crisis communication research</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>van der Meer, Toni G.L.A.</creator><creatorcontrib>van der Meer, Toni G.L.A.</creatorcontrib><description>•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research.
Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.</description><identifier>ISSN: 0363-8111</identifier><identifier>EISSN: 1873-4537</identifier><identifier>DOI: 10.1016/j.pubrev.2016.09.001</identifier><identifier>CODEN: PREREL</identifier><language>eng</language><publisher>Silver Spring: Elsevier Inc</publisher><subject>Automated content analysis ; Automation ; Big data ; Communication ; Communication research ; Computational methods ; Computer science ; Content analysis ; Crises ; Crisis ; Data collection ; Intellectuals ; News media ; Studies</subject><ispartof>Public relations review, 2016-12, Vol.42 (5), p.952-961</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</citedby><cites>FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0363811116300212$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27845,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>van der Meer, Toni G.L.A.</creatorcontrib><title>Automated content analysis and crisis communication research</title><title>Public relations review</title><description>•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research.
Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.</description><subject>Automated content analysis</subject><subject>Automation</subject><subject>Big data</subject><subject>Communication</subject><subject>Communication research</subject><subject>Computational methods</subject><subject>Computer science</subject><subject>Content analysis</subject><subject>Crises</subject><subject>Crisis</subject><subject>Data collection</subject><subject>Intellectuals</subject><subject>News media</subject><subject>Studies</subject><issn>0363-8111</issn><issn>1873-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UMtqwzAQFKWFpmn_oIdAz3ZXVmTLUAqh9AWBXnIXsrSiMrGVSnIgf18F99zTzi4zw84Qck-hpEDrx748TF3AY1nlrYS2BKAXZEFFw4o1Z80lWQCrWSEopdfkJsYeAHhL-YI8babkB5XQrLQfE45ppUa1P0UXM8jH4M5Q-2GYRqdVcn5cBYyogv6-JVdW7SPe_c0l2b297l4-iu3X--fLZltoJiAVtGuQq9q2QgFr26YzpqmosYpaAbRTSgjO7Vp3Vcdtaw0aMK2CipkaKy7YkjzMtofgfyaMSfZ-CvnLKHNEzjIlk5dkPbN08DEGtPIQ3KDCSVKQ55pkL-ea5LkmCa3MNWXZ8yzDHODoMMioHY4ajQuokzTe_W_wC2ZCc6c</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>van der Meer, Toni G.L.A.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>201612</creationdate><title>Automated content analysis and crisis communication research</title><author>van der Meer, Toni G.L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automated content analysis</topic><topic>Automation</topic><topic>Big data</topic><topic>Communication</topic><topic>Communication research</topic><topic>Computational methods</topic><topic>Computer science</topic><topic>Content analysis</topic><topic>Crises</topic><topic>Crisis</topic><topic>Data collection</topic><topic>Intellectuals</topic><topic>News media</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Meer, Toni G.L.A.</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Public relations review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Meer, Toni G.L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated content analysis and crisis communication research</atitle><jtitle>Public relations review</jtitle><date>2016-12</date><risdate>2016</risdate><volume>42</volume><issue>5</issue><spage>952</spage><epage>961</epage><pages>952-961</pages><issn>0363-8111</issn><eissn>1873-4537</eissn><coden>PREREL</coden><abstract>•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research.
Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.</abstract><cop>Silver Spring</cop><pub>Elsevier Inc</pub><doi>10.1016/j.pubrev.2016.09.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-8111 |
ispartof | Public relations review, 2016-12, Vol.42 (5), p.952-961 |
issn | 0363-8111 1873-4537 |
language | eng |
recordid | cdi_proquest_journals_1875358302 |
source | PAIS Index; Elsevier ScienceDirect Journals |
subjects | Automated content analysis Automation Big data Communication Communication research Computational methods Computer science Content analysis Crises Crisis Data collection Intellectuals News media Studies |
title | Automated content analysis and crisis communication research |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20content%20analysis%20and%20crisis%20communication%20research&rft.jtitle=Public%20relations%20review&rft.au=van%20der%20Meer,%20Toni%20G.L.A.&rft.date=2016-12&rft.volume=42&rft.issue=5&rft.spage=952&rft.epage=961&rft.pages=952-961&rft.issn=0363-8111&rft.eissn=1873-4537&rft.coden=PREREL&rft_id=info:doi/10.1016/j.pubrev.2016.09.001&rft_dat=%3Cproquest_cross%3E4319745921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875358302&rft_id=info:pmid/&rft_els_id=S0363811116300212&rfr_iscdi=true |