Automated content analysis and crisis communication research

•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question relate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Public relations review 2016-12, Vol.42 (5), p.952-961
1. Verfasser: van der Meer, Toni G.L.A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 5
container_start_page 952
container_title Public relations review
container_volume 42
creator van der Meer, Toni G.L.A.
description •This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research. Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.
doi_str_mv 10.1016/j.pubrev.2016.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1875358302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0363811116300212</els_id><sourcerecordid>4319745921</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</originalsourceid><addsrcrecordid>eNp9UMtqwzAQFKWFpmn_oIdAz3ZXVmTLUAqh9AWBXnIXsrSiMrGVSnIgf18F99zTzi4zw84Qck-hpEDrx748TF3AY1nlrYS2BKAXZEFFw4o1Z80lWQCrWSEopdfkJsYeAHhL-YI8babkB5XQrLQfE45ppUa1P0UXM8jH4M5Q-2GYRqdVcn5cBYyogv6-JVdW7SPe_c0l2b297l4-iu3X--fLZltoJiAVtGuQq9q2QgFr26YzpqmosYpaAbRTSgjO7Vp3Vcdtaw0aMK2CipkaKy7YkjzMtofgfyaMSfZ-CvnLKHNEzjIlk5dkPbN08DEGtPIQ3KDCSVKQ55pkL-ea5LkmCa3MNWXZ8yzDHODoMMioHY4ajQuokzTe_W_wC2ZCc6c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875358302</pqid></control><display><type>article</type><title>Automated content analysis and crisis communication research</title><source>PAIS Index</source><source>Elsevier ScienceDirect Journals</source><creator>van der Meer, Toni G.L.A.</creator><creatorcontrib>van der Meer, Toni G.L.A.</creatorcontrib><description>•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research. Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.</description><identifier>ISSN: 0363-8111</identifier><identifier>EISSN: 1873-4537</identifier><identifier>DOI: 10.1016/j.pubrev.2016.09.001</identifier><identifier>CODEN: PREREL</identifier><language>eng</language><publisher>Silver Spring: Elsevier Inc</publisher><subject>Automated content analysis ; Automation ; Big data ; Communication ; Communication research ; Computational methods ; Computer science ; Content analysis ; Crises ; Crisis ; Data collection ; Intellectuals ; News media ; Studies</subject><ispartof>Public relations review, 2016-12, Vol.42 (5), p.952-961</ispartof><rights>2016 Elsevier Inc.</rights><rights>Copyright Elsevier Science Ltd. Dec 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</citedby><cites>FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0363811116300212$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3536,27845,27903,27904,65309</link.rule.ids></links><search><creatorcontrib>van der Meer, Toni G.L.A.</creatorcontrib><title>Automated content analysis and crisis communication research</title><title>Public relations review</title><description>•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research. Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.</description><subject>Automated content analysis</subject><subject>Automation</subject><subject>Big data</subject><subject>Communication</subject><subject>Communication research</subject><subject>Computational methods</subject><subject>Computer science</subject><subject>Content analysis</subject><subject>Crises</subject><subject>Crisis</subject><subject>Data collection</subject><subject>Intellectuals</subject><subject>News media</subject><subject>Studies</subject><issn>0363-8111</issn><issn>1873-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>7TQ</sourceid><recordid>eNp9UMtqwzAQFKWFpmn_oIdAz3ZXVmTLUAqh9AWBXnIXsrSiMrGVSnIgf18F99zTzi4zw84Qck-hpEDrx748TF3AY1nlrYS2BKAXZEFFw4o1Z80lWQCrWSEopdfkJsYeAHhL-YI8babkB5XQrLQfE45ppUa1P0UXM8jH4M5Q-2GYRqdVcn5cBYyogv6-JVdW7SPe_c0l2b297l4-iu3X--fLZltoJiAVtGuQq9q2QgFr26YzpqmosYpaAbRTSgjO7Vp3Vcdtaw0aMK2CipkaKy7YkjzMtofgfyaMSfZ-CvnLKHNEzjIlk5dkPbN08DEGtPIQ3KDCSVKQ55pkL-ea5LkmCa3MNWXZ8yzDHODoMMioHY4ajQuokzTe_W_wC2ZCc6c</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>van der Meer, Toni G.L.A.</creator><general>Elsevier Inc</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TQ</scope><scope>DHY</scope><scope>DON</scope></search><sort><creationdate>201612</creationdate><title>Automated content analysis and crisis communication research</title><author>van der Meer, Toni G.L.A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-1b7e5a6f98a03997bdd721dfa1f801baa8855f4cb2b5f9fded0d9a023d6e2583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Automated content analysis</topic><topic>Automation</topic><topic>Big data</topic><topic>Communication</topic><topic>Communication research</topic><topic>Computational methods</topic><topic>Computer science</topic><topic>Content analysis</topic><topic>Crises</topic><topic>Crisis</topic><topic>Data collection</topic><topic>Intellectuals</topic><topic>News media</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van der Meer, Toni G.L.A.</creatorcontrib><collection>CrossRef</collection><collection>PAIS Index</collection><collection>PAIS International</collection><collection>PAIS International (Ovid)</collection><jtitle>Public relations review</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>van der Meer, Toni G.L.A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automated content analysis and crisis communication research</atitle><jtitle>Public relations review</jtitle><date>2016-12</date><risdate>2016</risdate><volume>42</volume><issue>5</issue><spage>952</spage><epage>961</epage><pages>952-961</pages><issn>0363-8111</issn><eissn>1873-4537</eissn><coden>PREREL</coden><abstract>•This paper provides an overview of how automated content analysis can advance crisis research.•The dictionary method, supervised method, and the unsupervised method as potential useful tools are discussed.•This paper provides examples of how these methods have been applied to answer question related to crisis research. Communication plays a central role in how crisis events evolve. The huge collection of today’s digital available content from actors such as organizations, news media, and the public provides scholars with the opportunity to analyze large-sized collections of crisis-related communication and provide supplementary evidence for previous findings from smaller scaled research. However, the massive costs and complexity of analyzing these large-scaled data sets have hindered their use within the field of crisis research. This paper aims to provide an overview of how automated content analysis can potentially simplify and complement the analysis of these large collections of texts. Computational methods have long been used in the field of computer science and are currently gaining momentum within the field of crisis communication. This paper discusses the dictionary method, supervised method, and the unsupervised method as potential useful tools for analyzing crisis communication.</abstract><cop>Silver Spring</cop><pub>Elsevier Inc</pub><doi>10.1016/j.pubrev.2016.09.001</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-8111
ispartof Public relations review, 2016-12, Vol.42 (5), p.952-961
issn 0363-8111
1873-4537
language eng
recordid cdi_proquest_journals_1875358302
source PAIS Index; Elsevier ScienceDirect Journals
subjects Automated content analysis
Automation
Big data
Communication
Communication research
Computational methods
Computer science
Content analysis
Crises
Crisis
Data collection
Intellectuals
News media
Studies
title Automated content analysis and crisis communication research
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A29%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automated%20content%20analysis%20and%20crisis%20communication%20research&rft.jtitle=Public%20relations%20review&rft.au=van%20der%20Meer,%20Toni%20G.L.A.&rft.date=2016-12&rft.volume=42&rft.issue=5&rft.spage=952&rft.epage=961&rft.pages=952-961&rft.issn=0363-8111&rft.eissn=1873-4537&rft.coden=PREREL&rft_id=info:doi/10.1016/j.pubrev.2016.09.001&rft_dat=%3Cproquest_cross%3E4319745921%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875358302&rft_id=info:pmid/&rft_els_id=S0363811116300212&rfr_iscdi=true