Characterization of GO2–GH2 Simulations of a Miniature Vortex Combustion Cold-Wall Chamber

This study describes a numerical simulation of a miniature vortex combustion cold-wall chamber using a two-stage choked nozzle approach. Recognizing that the nozzle is choked at the throat under normal operation, the miniaturized vortex chamber is decomposed into two parts: The first segment extends...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of propulsion and power 2017-03, Vol.33 (2), p.387-397
Hauptverfasser: Majdalani, Joseph, Chiaverini, Martin J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 397
container_issue 2
container_start_page 387
container_title Journal of propulsion and power
container_volume 33
creator Majdalani, Joseph
Chiaverini, Martin J
description This study describes a numerical simulation of a miniature vortex combustion cold-wall chamber using a two-stage choked nozzle approach. Recognizing that the nozzle is choked at the throat under normal operation, the miniaturized vortex chamber is decomposed into two parts: The first segment extends from the headwall to the throat, whereas the second extends from the throat to the nozzle exit plane. In stage 1, an incompressible model is used leading up to the nozzle entrance. In stage 2, compressibility is superimposed, starting with the output from stage 1. This two-stage simulation reduces CPU time and helps to achieve convergence. Compressible simulations are then performed using a three-dimensional pressure-based, finite volume, unstructured solver. Furthermore, reaction mechanisms are simulated using a non-premixed combustion model with adiabatic probability density function lookup tables. Eight conventional chemical species are used, including O2, H2, H2O, HO2, H2O2, O, H, and OH. At the outset, the existence of a bidirectional motion is demonstrated and the spatial invariance of the so-called mantle interface, which separates inner and outer vortex regions, is corroborated. This work confirms the effectiveness of convective film cooling of the chamber walls as a characteristic feature of cyclonic motion involving a low-temperature oxidizer.
doi_str_mv 10.2514/1.B36277
format Article
fullrecord <record><control><sourceid>proquest_aiaa_</sourceid><recordid>TN_cdi_proquest_journals_1875196424</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2493569464</sourcerecordid><originalsourceid>FETCH-LOGICAL-a346t-7c342104870f389a4441d96c6310b446f7442bb4af85e9ff53e8703255fcbfd23</originalsourceid><addsrcrecordid>eNp9kc1Kw0AQxxdRsFbBRwiI4CV1P2Y_ctSgrVDpwa-LEDbpLqYk2bqbgHryHXxDn8S0FRQPngZmfvObgT9ChwSPKCdwSkbnTFApt9CAcMZipqTYRgMsQcUguNpFeyEsMCZCCTlAj-mT9rpojS_fdFu6JnI2Gs_o5_vHeEKjm7LuqnU_rAY6ui6bUredN9G98615iVJX511Yb6aumscPuqqiXlrnxu-jHaurYA6-6xDdXV7cppN4OhtfpWfTWDMQbSwLBpRgUBJbphINAGSeiEIwgnMAYSUAzXPQVnGTWMuZ6VFGObdFbueUDdHJxrv07rkzoc3qMhSmqnRjXBcykmCgNFGc9-jRH3ThOt_032UUEsZFAgL-o4iSnCQCKPycLbwLwRubLX1Za_-aEZytwshItgmjR483qC61_iX7y30B0luE-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875196424</pqid></control><display><type>article</type><title>Characterization of GO2–GH2 Simulations of a Miniature Vortex Combustion Cold-Wall Chamber</title><source>Alma/SFX Local Collection</source><creator>Majdalani, Joseph ; Chiaverini, Martin J</creator><creatorcontrib>Majdalani, Joseph ; Chiaverini, Martin J</creatorcontrib><description>This study describes a numerical simulation of a miniature vortex combustion cold-wall chamber using a two-stage choked nozzle approach. Recognizing that the nozzle is choked at the throat under normal operation, the miniaturized vortex chamber is decomposed into two parts: The first segment extends from the headwall to the throat, whereas the second extends from the throat to the nozzle exit plane. In stage 1, an incompressible model is used leading up to the nozzle entrance. In stage 2, compressibility is superimposed, starting with the output from stage 1. This two-stage simulation reduces CPU time and helps to achieve convergence. Compressible simulations are then performed using a three-dimensional pressure-based, finite volume, unstructured solver. Furthermore, reaction mechanisms are simulated using a non-premixed combustion model with adiabatic probability density function lookup tables. Eight conventional chemical species are used, including O2, H2, H2O, HO2, H2O2, O, H, and OH. At the outset, the existence of a bidirectional motion is demonstrated and the spatial invariance of the so-called mantle interface, which separates inner and outer vortex regions, is corroborated. This work confirms the effectiveness of convective film cooling of the chamber walls as a characteristic feature of cyclonic motion involving a low-temperature oxidizer.</description><identifier>ISSN: 0748-4658</identifier><identifier>EISSN: 1533-3876</identifier><identifier>DOI: 10.2514/1.B36277</identifier><identifier>CODEN: JPPOEL</identifier><language>eng</language><publisher>Reston: American Institute of Aeronautics and Astronautics</publisher><subject>Chambers ; Combustion chambers ; Compressibility ; Computational fluid dynamics ; Computer simulation ; Cooling effects ; Entrances ; Film cooling ; Fluid flow ; Headwalls ; Hydrogen peroxide ; Lookup tables ; Low temperature ; Mathematical models ; Nozzles ; Oxidizing agents ; Probability density functions ; Reaction mechanisms ; Simulation ; Throats ; Vortex chambers ; Vortices</subject><ispartof>Journal of propulsion and power, 2017-03, Vol.33 (2), p.387-397</ispartof><rights>Copyright © 2016 by J. Majdalani and M. J. Chiaverini. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at ; employ the ISSN (print) or (online) to initiate your request. See also AIAA Rights and Permissions .</rights><rights>Copyright © 2016 by J. Majdalani and M. J. Chiaverini. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><rights>Copyright © 2016 by J. Majdalani and M. J. Chiaverini. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0748-4658 (print) or 1533-3876 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a346t-7c342104870f389a4441d96c6310b446f7442bb4af85e9ff53e8703255fcbfd23</citedby><cites>FETCH-LOGICAL-a346t-7c342104870f389a4441d96c6310b446f7442bb4af85e9ff53e8703255fcbfd23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Majdalani, Joseph</creatorcontrib><creatorcontrib>Chiaverini, Martin J</creatorcontrib><title>Characterization of GO2–GH2 Simulations of a Miniature Vortex Combustion Cold-Wall Chamber</title><title>Journal of propulsion and power</title><description>This study describes a numerical simulation of a miniature vortex combustion cold-wall chamber using a two-stage choked nozzle approach. Recognizing that the nozzle is choked at the throat under normal operation, the miniaturized vortex chamber is decomposed into two parts: The first segment extends from the headwall to the throat, whereas the second extends from the throat to the nozzle exit plane. In stage 1, an incompressible model is used leading up to the nozzle entrance. In stage 2, compressibility is superimposed, starting with the output from stage 1. This two-stage simulation reduces CPU time and helps to achieve convergence. Compressible simulations are then performed using a three-dimensional pressure-based, finite volume, unstructured solver. Furthermore, reaction mechanisms are simulated using a non-premixed combustion model with adiabatic probability density function lookup tables. Eight conventional chemical species are used, including O2, H2, H2O, HO2, H2O2, O, H, and OH. At the outset, the existence of a bidirectional motion is demonstrated and the spatial invariance of the so-called mantle interface, which separates inner and outer vortex regions, is corroborated. This work confirms the effectiveness of convective film cooling of the chamber walls as a characteristic feature of cyclonic motion involving a low-temperature oxidizer.</description><subject>Chambers</subject><subject>Combustion chambers</subject><subject>Compressibility</subject><subject>Computational fluid dynamics</subject><subject>Computer simulation</subject><subject>Cooling effects</subject><subject>Entrances</subject><subject>Film cooling</subject><subject>Fluid flow</subject><subject>Headwalls</subject><subject>Hydrogen peroxide</subject><subject>Lookup tables</subject><subject>Low temperature</subject><subject>Mathematical models</subject><subject>Nozzles</subject><subject>Oxidizing agents</subject><subject>Probability density functions</subject><subject>Reaction mechanisms</subject><subject>Simulation</subject><subject>Throats</subject><subject>Vortex chambers</subject><subject>Vortices</subject><issn>0748-4658</issn><issn>1533-3876</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kc1Kw0AQxxdRsFbBRwiI4CV1P2Y_ctSgrVDpwa-LEDbpLqYk2bqbgHryHXxDn8S0FRQPngZmfvObgT9ChwSPKCdwSkbnTFApt9CAcMZipqTYRgMsQcUguNpFeyEsMCZCCTlAj-mT9rpojS_fdFu6JnI2Gs_o5_vHeEKjm7LuqnU_rAY6ui6bUredN9G98615iVJX511Yb6aumscPuqqiXlrnxu-jHaurYA6-6xDdXV7cppN4OhtfpWfTWDMQbSwLBpRgUBJbphINAGSeiEIwgnMAYSUAzXPQVnGTWMuZ6VFGObdFbueUDdHJxrv07rkzoc3qMhSmqnRjXBcykmCgNFGc9-jRH3ThOt_032UUEsZFAgL-o4iSnCQCKPycLbwLwRubLX1Za_-aEZytwshItgmjR483qC61_iX7y30B0luE-g</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Majdalani, Joseph</creator><creator>Chiaverini, Martin J</creator><general>American Institute of Aeronautics and Astronautics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170301</creationdate><title>Characterization of GO2–GH2 Simulations of a Miniature Vortex Combustion Cold-Wall Chamber</title><author>Majdalani, Joseph ; Chiaverini, Martin J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a346t-7c342104870f389a4441d96c6310b446f7442bb4af85e9ff53e8703255fcbfd23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chambers</topic><topic>Combustion chambers</topic><topic>Compressibility</topic><topic>Computational fluid dynamics</topic><topic>Computer simulation</topic><topic>Cooling effects</topic><topic>Entrances</topic><topic>Film cooling</topic><topic>Fluid flow</topic><topic>Headwalls</topic><topic>Hydrogen peroxide</topic><topic>Lookup tables</topic><topic>Low temperature</topic><topic>Mathematical models</topic><topic>Nozzles</topic><topic>Oxidizing agents</topic><topic>Probability density functions</topic><topic>Reaction mechanisms</topic><topic>Simulation</topic><topic>Throats</topic><topic>Vortex chambers</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Majdalani, Joseph</creatorcontrib><creatorcontrib>Chiaverini, Martin J</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of propulsion and power</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Majdalani, Joseph</au><au>Chiaverini, Martin J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of GO2–GH2 Simulations of a Miniature Vortex Combustion Cold-Wall Chamber</atitle><jtitle>Journal of propulsion and power</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>33</volume><issue>2</issue><spage>387</spage><epage>397</epage><pages>387-397</pages><issn>0748-4658</issn><eissn>1533-3876</eissn><coden>JPPOEL</coden><abstract>This study describes a numerical simulation of a miniature vortex combustion cold-wall chamber using a two-stage choked nozzle approach. Recognizing that the nozzle is choked at the throat under normal operation, the miniaturized vortex chamber is decomposed into two parts: The first segment extends from the headwall to the throat, whereas the second extends from the throat to the nozzle exit plane. In stage 1, an incompressible model is used leading up to the nozzle entrance. In stage 2, compressibility is superimposed, starting with the output from stage 1. This two-stage simulation reduces CPU time and helps to achieve convergence. Compressible simulations are then performed using a three-dimensional pressure-based, finite volume, unstructured solver. Furthermore, reaction mechanisms are simulated using a non-premixed combustion model with adiabatic probability density function lookup tables. Eight conventional chemical species are used, including O2, H2, H2O, HO2, H2O2, O, H, and OH. At the outset, the existence of a bidirectional motion is demonstrated and the spatial invariance of the so-called mantle interface, which separates inner and outer vortex regions, is corroborated. This work confirms the effectiveness of convective film cooling of the chamber walls as a characteristic feature of cyclonic motion involving a low-temperature oxidizer.</abstract><cop>Reston</cop><pub>American Institute of Aeronautics and Astronautics</pub><doi>10.2514/1.B36277</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0748-4658
ispartof Journal of propulsion and power, 2017-03, Vol.33 (2), p.387-397
issn 0748-4658
1533-3876
language eng
recordid cdi_proquest_journals_1875196424
source Alma/SFX Local Collection
subjects Chambers
Combustion chambers
Compressibility
Computational fluid dynamics
Computer simulation
Cooling effects
Entrances
Film cooling
Fluid flow
Headwalls
Hydrogen peroxide
Lookup tables
Low temperature
Mathematical models
Nozzles
Oxidizing agents
Probability density functions
Reaction mechanisms
Simulation
Throats
Vortex chambers
Vortices
title Characterization of GO2–GH2 Simulations of a Miniature Vortex Combustion Cold-Wall Chamber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A50%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_aiaa_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20GO2%E2%80%93GH2%20Simulations%20of%20a%20Miniature%20Vortex%20Combustion%20Cold-Wall%20Chamber&rft.jtitle=Journal%20of%20propulsion%20and%20power&rft.au=Majdalani,%20Joseph&rft.date=2017-03-01&rft.volume=33&rft.issue=2&rft.spage=387&rft.epage=397&rft.pages=387-397&rft.issn=0748-4658&rft.eissn=1533-3876&rft.coden=JPPOEL&rft_id=info:doi/10.2514/1.B36277&rft_dat=%3Cproquest_aiaa_%3E2493569464%3C/proquest_aiaa_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875196424&rft_id=info:pmid/&rfr_iscdi=true