Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EE...
Gespeichert in:
Veröffentlicht in: | Journal of cognitive neuroscience 2017-04, Vol.29 (4), p.677-697 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 697 |
---|---|
container_issue | 4 |
container_start_page | 677 |
container_title | Journal of cognitive neuroscience |
container_volume | 29 |
creator | Grootswagers, Tijl Wardle, Susan G. Carlson, Thomas A. |
description | Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments. |
doi_str_mv | 10.1162/jocn_a_01068 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1875086696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835680488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhS1ERS-FHWtkiQ0LQm0nfrHi0hZaqTwEd8HOcpJJ5UsSB9u50u1f6J_GfUFBXbAa2frmzJk5CD2j5DWlgu2vfTMaawglQj1AC8pLUiil1UO0ILkUmunvu-hxjGtCCOOieoR2mZRSa0oW6OIQGt-68Qwfbkc7uAa_C9aN-ItNCcIYcRf8gI82_ge0-CvEyY8R4hu8xKs5-eBsj_2IP859chubnwluW_FytP02uoiX09S73J48XrkB8DcIDiL-BHPwbrBnV9Ntsk_QTmf7CE9v6h5avT9aHRwXp58_nBwsT4uGVyIV0FLCuVAaaqq0zX9lXbVCC8ttXrbrOLSqYZVQVFWklqXkEoBZ2_K27kS5h15ey07B_5whJjO42EDf2xH8HA1VUirOZVX-B1pmI6RSKqMv_kHXfg75BFeCnCiRHWbq1TXVBB9jgM5MIZ8gbA0l5jJOczfOjD-_EZ3rAdrf8G1-fwwO7u7A-7Xe3oNeIhumXWVKUlZSGEYYzd2GaHPupr8lfgEx_L68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875086696</pqid></control><display><type>article</type><title>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Grootswagers, Tijl ; Wardle, Susan G. ; Carlson, Thomas A.</creator><creatorcontrib>Grootswagers, Tijl ; Wardle, Susan G. ; Carlson, Thomas A.</creatorcontrib><description>Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.</description><identifier>ISSN: 0898-929X</identifier><identifier>EISSN: 1530-8898</identifier><identifier>DOI: 10.1162/jocn_a_01068</identifier><identifier>PMID: 27779910</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Brain - physiology ; Cognition & reasoning ; Data analysis ; Evoked Potentials - physiology ; Functional Neuroimaging - methods ; Humans ; Magnetoencephalography - methods ; Medical imaging ; Multivariate Analysis ; Neurosciences ; Signal Processing, Computer-Assisted ; Time series</subject><ispartof>Journal of cognitive neuroscience, 2017-04, Vol.29 (4), p.677-697</ispartof><rights>Copyright MIT Press Journals Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</citedby><cites>FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/jocn/article/doi/10.1162/jocn_a_01068$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27779910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grootswagers, Tijl</creatorcontrib><creatorcontrib>Wardle, Susan G.</creatorcontrib><creatorcontrib>Carlson, Thomas A.</creatorcontrib><title>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</title><title>Journal of cognitive neuroscience</title><addtitle>J Cogn Neurosci</addtitle><description>Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.</description><subject>Brain - physiology</subject><subject>Cognition & reasoning</subject><subject>Data analysis</subject><subject>Evoked Potentials - physiology</subject><subject>Functional Neuroimaging - methods</subject><subject>Humans</subject><subject>Magnetoencephalography - methods</subject><subject>Medical imaging</subject><subject>Multivariate Analysis</subject><subject>Neurosciences</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time series</subject><issn>0898-929X</issn><issn>1530-8898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhS1ERS-FHWtkiQ0LQm0nfrHi0hZaqTwEd8HOcpJJ5UsSB9u50u1f6J_GfUFBXbAa2frmzJk5CD2j5DWlgu2vfTMaawglQj1AC8pLUiil1UO0ILkUmunvu-hxjGtCCOOieoR2mZRSa0oW6OIQGt-68Qwfbkc7uAa_C9aN-ItNCcIYcRf8gI82_ge0-CvEyY8R4hu8xKs5-eBsj_2IP859chubnwluW_FytP02uoiX09S73J48XrkB8DcIDiL-BHPwbrBnV9Ntsk_QTmf7CE9v6h5avT9aHRwXp58_nBwsT4uGVyIV0FLCuVAaaqq0zX9lXbVCC8ttXrbrOLSqYZVQVFWklqXkEoBZ2_K27kS5h15ey07B_5whJjO42EDf2xH8HA1VUirOZVX-B1pmI6RSKqMv_kHXfg75BFeCnCiRHWbq1TXVBB9jgM5MIZ8gbA0l5jJOczfOjD-_EZ3rAdrf8G1-fwwO7u7A-7Xe3oNeIhumXWVKUlZSGEYYzd2GaHPupr8lfgEx_L68</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Grootswagers, Tijl</creator><creator>Wardle, Susan G.</creator><creator>Carlson, Thomas A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</title><author>Grootswagers, Tijl ; Wardle, Susan G. ; Carlson, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain - physiology</topic><topic>Cognition & reasoning</topic><topic>Data analysis</topic><topic>Evoked Potentials - physiology</topic><topic>Functional Neuroimaging - methods</topic><topic>Humans</topic><topic>Magnetoencephalography - methods</topic><topic>Medical imaging</topic><topic>Multivariate Analysis</topic><topic>Neurosciences</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grootswagers, Tijl</creatorcontrib><creatorcontrib>Wardle, Susan G.</creatorcontrib><creatorcontrib>Carlson, Thomas A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grootswagers, Tijl</au><au>Wardle, Susan G.</au><au>Carlson, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</atitle><jtitle>Journal of cognitive neuroscience</jtitle><addtitle>J Cogn Neurosci</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>29</volume><issue>4</issue><spage>677</spage><epage>697</epage><pages>677-697</pages><issn>0898-929X</issn><eissn>1530-8898</eissn><abstract>Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>27779910</pmid><doi>10.1162/jocn_a_01068</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0898-929X |
ispartof | Journal of cognitive neuroscience, 2017-04, Vol.29 (4), p.677-697 |
issn | 0898-929X 1530-8898 |
language | eng |
recordid | cdi_proquest_journals_1875086696 |
source | MEDLINE; MIT Press Journals |
subjects | Brain - physiology Cognition & reasoning Data analysis Evoked Potentials - physiology Functional Neuroimaging - methods Humans Magnetoencephalography - methods Medical imaging Multivariate Analysis Neurosciences Signal Processing, Computer-Assisted Time series |
title | Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20Dynamic%20Brain%20Patterns%20from%20Evoked%20Responses:%20A%20Tutorial%20on%20Multivariate%20Pattern%20Analysis%20Applied%20to%20Time%20Series%20Neuroimaging%20Data&rft.jtitle=Journal%20of%20cognitive%20neuroscience&rft.au=Grootswagers,%20Tijl&rft.date=2017-04-01&rft.volume=29&rft.issue=4&rft.spage=677&rft.epage=697&rft.pages=677-697&rft.issn=0898-929X&rft.eissn=1530-8898&rft_id=info:doi/10.1162/jocn_a_01068&rft_dat=%3Cproquest_cross%3E1835680488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875086696&rft_id=info:pmid/27779910&rfr_iscdi=true |