Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data

Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of cognitive neuroscience 2017-04, Vol.29 (4), p.677-697
Hauptverfasser: Grootswagers, Tijl, Wardle, Susan G., Carlson, Thomas A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 697
container_issue 4
container_start_page 677
container_title Journal of cognitive neuroscience
container_volume 29
creator Grootswagers, Tijl
Wardle, Susan G.
Carlson, Thomas A.
description Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.
doi_str_mv 10.1162/jocn_a_01068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1875086696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835680488</sourcerecordid><originalsourceid>FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</originalsourceid><addsrcrecordid>eNqNkUtv1TAQhS1ERS-FHWtkiQ0LQm0nfrHi0hZaqTwEd8HOcpJJ5UsSB9u50u1f6J_GfUFBXbAa2frmzJk5CD2j5DWlgu2vfTMaawglQj1AC8pLUiil1UO0ILkUmunvu-hxjGtCCOOieoR2mZRSa0oW6OIQGt-68Qwfbkc7uAa_C9aN-ItNCcIYcRf8gI82_ge0-CvEyY8R4hu8xKs5-eBsj_2IP859chubnwluW_FytP02uoiX09S73J48XrkB8DcIDiL-BHPwbrBnV9Ntsk_QTmf7CE9v6h5avT9aHRwXp58_nBwsT4uGVyIV0FLCuVAaaqq0zX9lXbVCC8ttXrbrOLSqYZVQVFWklqXkEoBZ2_K27kS5h15ey07B_5whJjO42EDf2xH8HA1VUirOZVX-B1pmI6RSKqMv_kHXfg75BFeCnCiRHWbq1TXVBB9jgM5MIZ8gbA0l5jJOczfOjD-_EZ3rAdrf8G1-fwwO7u7A-7Xe3oNeIhumXWVKUlZSGEYYzd2GaHPupr8lfgEx_L68</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875086696</pqid></control><display><type>article</type><title>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</title><source>MEDLINE</source><source>MIT Press Journals</source><creator>Grootswagers, Tijl ; Wardle, Susan G. ; Carlson, Thomas A.</creator><creatorcontrib>Grootswagers, Tijl ; Wardle, Susan G. ; Carlson, Thomas A.</creatorcontrib><description>Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.</description><identifier>ISSN: 0898-929X</identifier><identifier>EISSN: 1530-8898</identifier><identifier>DOI: 10.1162/jocn_a_01068</identifier><identifier>PMID: 27779910</identifier><language>eng</language><publisher>One Rogers Street, Cambridge, MA 02142-1209, USA: MIT Press</publisher><subject>Brain - physiology ; Cognition &amp; reasoning ; Data analysis ; Evoked Potentials - physiology ; Functional Neuroimaging - methods ; Humans ; Magnetoencephalography - methods ; Medical imaging ; Multivariate Analysis ; Neurosciences ; Signal Processing, Computer-Assisted ; Time series</subject><ispartof>Journal of cognitive neuroscience, 2017-04, Vol.29 (4), p.677-697</ispartof><rights>Copyright MIT Press Journals Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</citedby><cites>FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://direct.mit.edu/jocn/article/doi/10.1162/jocn_a_01068$$EHTML$$P50$$Gmit$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,53984,53985</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27779910$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Grootswagers, Tijl</creatorcontrib><creatorcontrib>Wardle, Susan G.</creatorcontrib><creatorcontrib>Carlson, Thomas A.</creatorcontrib><title>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</title><title>Journal of cognitive neuroscience</title><addtitle>J Cogn Neurosci</addtitle><description>Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.</description><subject>Brain - physiology</subject><subject>Cognition &amp; reasoning</subject><subject>Data analysis</subject><subject>Evoked Potentials - physiology</subject><subject>Functional Neuroimaging - methods</subject><subject>Humans</subject><subject>Magnetoencephalography - methods</subject><subject>Medical imaging</subject><subject>Multivariate Analysis</subject><subject>Neurosciences</subject><subject>Signal Processing, Computer-Assisted</subject><subject>Time series</subject><issn>0898-929X</issn><issn>1530-8898</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1TAQhS1ERS-FHWtkiQ0LQm0nfrHi0hZaqTwEd8HOcpJJ5UsSB9u50u1f6J_GfUFBXbAa2frmzJk5CD2j5DWlgu2vfTMaawglQj1AC8pLUiil1UO0ILkUmunvu-hxjGtCCOOieoR2mZRSa0oW6OIQGt-68Qwfbkc7uAa_C9aN-ItNCcIYcRf8gI82_ge0-CvEyY8R4hu8xKs5-eBsj_2IP859chubnwluW_FytP02uoiX09S73J48XrkB8DcIDiL-BHPwbrBnV9Ntsk_QTmf7CE9v6h5avT9aHRwXp58_nBwsT4uGVyIV0FLCuVAaaqq0zX9lXbVCC8ttXrbrOLSqYZVQVFWklqXkEoBZ2_K27kS5h15ey07B_5whJjO42EDf2xH8HA1VUirOZVX-B1pmI6RSKqMv_kHXfg75BFeCnCiRHWbq1TXVBB9jgM5MIZ8gbA0l5jJOczfOjD-_EZ3rAdrf8G1-fwwO7u7A-7Xe3oNeIhumXWVKUlZSGEYYzd2GaHPupr8lfgEx_L68</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Grootswagers, Tijl</creator><creator>Wardle, Susan G.</creator><creator>Carlson, Thomas A.</creator><general>MIT Press</general><general>MIT Press Journals, The</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20170401</creationdate><title>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</title><author>Grootswagers, Tijl ; Wardle, Susan G. ; Carlson, Thomas A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c546t-ed1055689eb189a5463b4d696a5a929ff5ed8c24681840b73757ee2aad5dbf63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Brain - physiology</topic><topic>Cognition &amp; reasoning</topic><topic>Data analysis</topic><topic>Evoked Potentials - physiology</topic><topic>Functional Neuroimaging - methods</topic><topic>Humans</topic><topic>Magnetoencephalography - methods</topic><topic>Medical imaging</topic><topic>Multivariate Analysis</topic><topic>Neurosciences</topic><topic>Signal Processing, Computer-Assisted</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Grootswagers, Tijl</creatorcontrib><creatorcontrib>Wardle, Susan G.</creatorcontrib><creatorcontrib>Carlson, Thomas A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of cognitive neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Grootswagers, Tijl</au><au>Wardle, Susan G.</au><au>Carlson, Thomas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data</atitle><jtitle>Journal of cognitive neuroscience</jtitle><addtitle>J Cogn Neurosci</addtitle><date>2017-04-01</date><risdate>2017</risdate><volume>29</volume><issue>4</issue><spage>677</spage><epage>697</epage><pages>677-697</pages><issn>0898-929X</issn><eissn>1530-8898</eissn><abstract>Multivariate pattern analysis (MVPA) or brain decoding methods have become standard practice in analyzing fMRI data. Although decoding methods have been extensively applied in brain–computer interfaces, these methods have only recently been applied to time series neuroimaging data such as MEG and EEG to address experimental questions in cognitive neuroscience. In a tutorial style review, we describe a broad set of options to inform future time series decoding studies from a cognitive neuroscience perspective. Using example MEG data, we illustrate the effects that different options in the decoding analysis pipeline can have on experimental results where the aim is to “decode” different perceptual stimuli or cognitive states over time from dynamic brain activation patterns. We show that decisions made at both preprocessing (e.g., dimensionality reduction, subsampling, trial averaging) and decoding (e.g., classifier selection, cross-validation design) stages of the analysis can significantly affect the results. In addition to standard decoding, we describe extensions to MVPA for time-varying neuroimaging data including representational similarity analysis, temporal generalization, and the interpretation of classifier weight maps. Finally, we outline important caveats in the design and interpretation of time series decoding experiments.</abstract><cop>One Rogers Street, Cambridge, MA 02142-1209, USA</cop><pub>MIT Press</pub><pmid>27779910</pmid><doi>10.1162/jocn_a_01068</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0898-929X
ispartof Journal of cognitive neuroscience, 2017-04, Vol.29 (4), p.677-697
issn 0898-929X
1530-8898
language eng
recordid cdi_proquest_journals_1875086696
source MEDLINE; MIT Press Journals
subjects Brain - physiology
Cognition & reasoning
Data analysis
Evoked Potentials - physiology
Functional Neuroimaging - methods
Humans
Magnetoencephalography - methods
Medical imaging
Multivariate Analysis
Neurosciences
Signal Processing, Computer-Assisted
Time series
title Decoding Dynamic Brain Patterns from Evoked Responses: A Tutorial on Multivariate Pattern Analysis Applied to Time Series Neuroimaging Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T15%3A09%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decoding%20Dynamic%20Brain%20Patterns%20from%20Evoked%20Responses:%20A%20Tutorial%20on%20Multivariate%20Pattern%20Analysis%20Applied%20to%20Time%20Series%20Neuroimaging%20Data&rft.jtitle=Journal%20of%20cognitive%20neuroscience&rft.au=Grootswagers,%20Tijl&rft.date=2017-04-01&rft.volume=29&rft.issue=4&rft.spage=677&rft.epage=697&rft.pages=677-697&rft.issn=0898-929X&rft.eissn=1530-8898&rft_id=info:doi/10.1162/jocn_a_01068&rft_dat=%3Cproquest_cross%3E1835680488%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875086696&rft_id=info:pmid/27779910&rfr_iscdi=true