Beamformer With Constant-Gm Vector Modulators and Its Spatial Intermodulation Distortion
Spatial interference rejection in analog adaptive beamforming receivers can improve the distortion performance of the circuits following the beamforming network, but is susceptible to the nonlinearity of the beamforming network itself. This paper presents an analysis of intermodulation product cance...
Gespeichert in:
Veröffentlicht in: | IEEE journal of solid-state circuits 2017-03, Vol.52 (3), p.735-746 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 746 |
---|---|
container_issue | 3 |
container_start_page | 735 |
container_title | IEEE journal of solid-state circuits |
container_volume | 52 |
creator | Soer, Michiel C. M. Klumperink, Eric A. M. van den Broek, Dirk-Jan Nauta, Bram van Vliet, Frank E. |
description | Spatial interference rejection in analog adaptive beamforming receivers can improve the distortion performance of the circuits following the beamforming network, but is susceptible to the nonlinearity of the beamforming network itself. This paper presents an analysis of intermodulation product cancellation in analog active phased array receivers and verifies the distortion improvement in a four-element adaptive beamforming receiver for low-power applications in the 1.0-2.5-GHz frequency band. In this architecture, a constant-Gm vector modulator is proposed that produces an accurate equidistance square constellation, leading to a sliced frontend design that is duplicated for each antenna element. By moving the transconductances to RF, a fourfold reduction in power is achieved, while simultaneously providing input impedance matching. The 65-nm implementation consumes between 6.5 and 9 mW per antenna element and shows a +1 to +20 dBm in-band and out-of-beam third-order intercept point due to intermodulation distortion reduction. |
doi_str_mv | 10.1109/JSSC.2016.2639545 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1874551752</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7805216</ieee_id><sourcerecordid>1874551752</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-7cdf167fd3ea85b8d0944357ca2dd5fdd4c4198eed9a3219a864f0b5c12bf9b83</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHj8SZwkBSlERi_LoznJiW6Rq4mK7C_6eREWs5o7mzIx0ELoEMgMg5c3zalXNKIF8RnNWCi6O0ASEkBkUbH2MJoSAzEpKyCk6i3EztJxLmKD1ndWd86GzAX-26QtXvo9J9ymbd_jDNskH_OLNfquHFLHuDV6kiFc7nVq9xYs-2dAd5q3v8X0bB26M5-jE6W20F391it4fH96qp2z5Ol9Ut8usYSxPWdEYB3nhDLNailoaUnLORNFoaoxwxvCGQymtNaVmFEotc-5ILRqgtStryabo-nB3F_z33sakNn4f-uGlAllwIaAQdKDgQDXBxxisU7vQdjr8KCBqFKhGgWoUqP4EDjtXh53WWvvPF5IICjn7BQwXbbE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874551752</pqid></control><display><type>article</type><title>Beamformer With Constant-Gm Vector Modulators and Its Spatial Intermodulation Distortion</title><source>IEEE Electronic Library (IEL)</source><creator>Soer, Michiel C. M. ; Klumperink, Eric A. M. ; van den Broek, Dirk-Jan ; Nauta, Bram ; van Vliet, Frank E.</creator><creatorcontrib>Soer, Michiel C. M. ; Klumperink, Eric A. M. ; van den Broek, Dirk-Jan ; Nauta, Bram ; van Vliet, Frank E.</creatorcontrib><description>Spatial interference rejection in analog adaptive beamforming receivers can improve the distortion performance of the circuits following the beamforming network, but is susceptible to the nonlinearity of the beamforming network itself. This paper presents an analysis of intermodulation product cancellation in analog active phased array receivers and verifies the distortion improvement in a four-element adaptive beamforming receiver for low-power applications in the 1.0-2.5-GHz frequency band. In this architecture, a constant-Gm vector modulator is proposed that produces an accurate equidistance square constellation, leading to a sliced frontend design that is duplicated for each antenna element. By moving the transconductances to RF, a fourfold reduction in power is achieved, while simultaneously providing input impedance matching. The 65-nm implementation consumes between 6.5 and 9 mW per antenna element and shows a +1 to +20 dBm in-band and out-of-beam third-order intercept point due to intermodulation distortion reduction.</description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2016.2639545</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analog beamforming ; Array signal processing ; Beamforming ; compression point (CP) ; intercept point ; Interference ; interference nulling ; mixer ; Mixers ; Phase modulation ; phase shifter ; phased array ; Phased arrays ; receiver ; Receivers ; spatial filtering ; switched capacitor ; vector modulator</subject><ispartof>IEEE journal of solid-state circuits, 2017-03, Vol.52 (3), p.735-746</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-7cdf167fd3ea85b8d0944357ca2dd5fdd4c4198eed9a3219a864f0b5c12bf9b83</citedby><cites>FETCH-LOGICAL-c336t-7cdf167fd3ea85b8d0944357ca2dd5fdd4c4198eed9a3219a864f0b5c12bf9b83</cites><orcidid>0000-0002-3743-1643</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7805216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7805216$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Soer, Michiel C. M.</creatorcontrib><creatorcontrib>Klumperink, Eric A. M.</creatorcontrib><creatorcontrib>van den Broek, Dirk-Jan</creatorcontrib><creatorcontrib>Nauta, Bram</creatorcontrib><creatorcontrib>van Vliet, Frank E.</creatorcontrib><title>Beamformer With Constant-Gm Vector Modulators and Its Spatial Intermodulation Distortion</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description>Spatial interference rejection in analog adaptive beamforming receivers can improve the distortion performance of the circuits following the beamforming network, but is susceptible to the nonlinearity of the beamforming network itself. This paper presents an analysis of intermodulation product cancellation in analog active phased array receivers and verifies the distortion improvement in a four-element adaptive beamforming receiver for low-power applications in the 1.0-2.5-GHz frequency band. In this architecture, a constant-Gm vector modulator is proposed that produces an accurate equidistance square constellation, leading to a sliced frontend design that is duplicated for each antenna element. By moving the transconductances to RF, a fourfold reduction in power is achieved, while simultaneously providing input impedance matching. The 65-nm implementation consumes between 6.5 and 9 mW per antenna element and shows a +1 to +20 dBm in-band and out-of-beam third-order intercept point due to intermodulation distortion reduction.</description><subject>Analog beamforming</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>compression point (CP)</subject><subject>intercept point</subject><subject>Interference</subject><subject>interference nulling</subject><subject>mixer</subject><subject>Mixers</subject><subject>Phase modulation</subject><subject>phase shifter</subject><subject>phased array</subject><subject>Phased arrays</subject><subject>receiver</subject><subject>Receivers</subject><subject>spatial filtering</subject><subject>switched capacitor</subject><subject>vector modulator</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwAYiNJdYpHj8SZwkBSlERi_LoznJiW6Rq4mK7C_6eREWs5o7mzIx0ELoEMgMg5c3zalXNKIF8RnNWCi6O0ASEkBkUbH2MJoSAzEpKyCk6i3EztJxLmKD1ndWd86GzAX-26QtXvo9J9ymbd_jDNskH_OLNfquHFLHuDV6kiFc7nVq9xYs-2dAd5q3v8X0bB26M5-jE6W20F391it4fH96qp2z5Ol9Ut8usYSxPWdEYB3nhDLNailoaUnLORNFoaoxwxvCGQymtNaVmFEotc-5ILRqgtStryabo-nB3F_z33sakNn4f-uGlAllwIaAQdKDgQDXBxxisU7vQdjr8KCBqFKhGgWoUqP4EDjtXh53WWvvPF5IICjn7BQwXbbE</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Soer, Michiel C. M.</creator><creator>Klumperink, Eric A. M.</creator><creator>van den Broek, Dirk-Jan</creator><creator>Nauta, Bram</creator><creator>van Vliet, Frank E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3743-1643</orcidid></search><sort><creationdate>20170301</creationdate><title>Beamformer With Constant-Gm Vector Modulators and Its Spatial Intermodulation Distortion</title><author>Soer, Michiel C. M. ; Klumperink, Eric A. M. ; van den Broek, Dirk-Jan ; Nauta, Bram ; van Vliet, Frank E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-7cdf167fd3ea85b8d0944357ca2dd5fdd4c4198eed9a3219a864f0b5c12bf9b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analog beamforming</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>compression point (CP)</topic><topic>intercept point</topic><topic>Interference</topic><topic>interference nulling</topic><topic>mixer</topic><topic>Mixers</topic><topic>Phase modulation</topic><topic>phase shifter</topic><topic>phased array</topic><topic>Phased arrays</topic><topic>receiver</topic><topic>Receivers</topic><topic>spatial filtering</topic><topic>switched capacitor</topic><topic>vector modulator</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Soer, Michiel C. M.</creatorcontrib><creatorcontrib>Klumperink, Eric A. M.</creatorcontrib><creatorcontrib>van den Broek, Dirk-Jan</creatorcontrib><creatorcontrib>Nauta, Bram</creatorcontrib><creatorcontrib>van Vliet, Frank E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Soer, Michiel C. M.</au><au>Klumperink, Eric A. M.</au><au>van den Broek, Dirk-Jan</au><au>Nauta, Bram</au><au>van Vliet, Frank E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Beamformer With Constant-Gm Vector Modulators and Its Spatial Intermodulation Distortion</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>52</volume><issue>3</issue><spage>735</spage><epage>746</epage><pages>735-746</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract>Spatial interference rejection in analog adaptive beamforming receivers can improve the distortion performance of the circuits following the beamforming network, but is susceptible to the nonlinearity of the beamforming network itself. This paper presents an analysis of intermodulation product cancellation in analog active phased array receivers and verifies the distortion improvement in a four-element adaptive beamforming receiver for low-power applications in the 1.0-2.5-GHz frequency band. In this architecture, a constant-Gm vector modulator is proposed that produces an accurate equidistance square constellation, leading to a sliced frontend design that is duplicated for each antenna element. By moving the transconductances to RF, a fourfold reduction in power is achieved, while simultaneously providing input impedance matching. The 65-nm implementation consumes between 6.5 and 9 mW per antenna element and shows a +1 to +20 dBm in-band and out-of-beam third-order intercept point due to intermodulation distortion reduction.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSSC.2016.2639545</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-3743-1643</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2017-03, Vol.52 (3), p.735-746 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_proquest_journals_1874551752 |
source | IEEE Electronic Library (IEL) |
subjects | Analog beamforming Array signal processing Beamforming compression point (CP) intercept point Interference interference nulling mixer Mixers Phase modulation phase shifter phased array Phased arrays receiver Receivers spatial filtering switched capacitor vector modulator |
title | Beamformer With Constant-Gm Vector Modulators and Its Spatial Intermodulation Distortion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T05%3A19%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Beamformer%20With%20Constant-Gm%20Vector%20Modulators%20and%20Its%20Spatial%20Intermodulation%20Distortion&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Soer,%20Michiel%20C.%20M.&rft.date=2017-03-01&rft.volume=52&rft.issue=3&rft.spage=735&rft.epage=746&rft.pages=735-746&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2016.2639545&rft_dat=%3Cproquest_RIE%3E1874551752%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874551752&rft_id=info:pmid/&rft_ieee_id=7805216&rfr_iscdi=true |