The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants

This paper investigates the effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. The work is intended to be practical, but includes some new research. The practical contributions include a methodology for a combined evaluation of the ef...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2017-03, Vol.32 (1), p.91-98
Hauptverfasser: Vereide, Kaspar, Svingen, Bjornar, Nielsen, Torbjorn Kristian, Lia, Leif
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 98
container_issue 1
container_start_page 91
container_title IEEE transactions on energy conversion
container_volume 32
creator Vereide, Kaspar
Svingen, Bjornar
Nielsen, Torbjorn Kristian
Lia, Leif
description This paper investigates the effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. The work is intended to be practical, but includes some new research. The practical contributions include a methodology for a combined evaluation of the effects of installing surge tank throttles in hydropower plants, and a demonstration of the throttle effects through a case study. The research contributions include the evaluation of the throttle effect on power control, and a comparison of the throttle effects on power control for governor systems with speed feedback exclusively versus combined speed and power feedback. Field measurements are used to calibrate a numerical model of the case-study hydropower plant. The results from the case study show that the throttle has an insignificant positive impact on governor stability. Power control is improved when a throttle is installed; the overshoot of produced power and the time until steady-state conditions occur are reduced. The throttle has a significant effect on the hydraulic transients, and increases the water hammer and reduces the mass oscillations in the system.
doi_str_mv 10.1109/TEC.2016.2614829
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_1874548646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7727970</ieee_id><sourcerecordid>1874548646</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-6269d201d83f8b2c21e1c7f8305132f5af91f9266c62fb068d4aeabc6e853c953</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBb9eZjyZNLmXMTRg4WL0uaZpsnTWZaerYv7f7wKsDL897DucB4BGjMcZIvuTTyZggzMeE41QQeQUGmDGRIMTkNRggIVgiJJe34K5ttwjhlBE8APt8Y-DUWqMj9BauurA2MFfuC-ab4GNsareG3sGZ_zXB-QBXUZV1U8fDCC793gQ48S4G34ygchWcH6qguqbWMA_KtbVxsYW1O-V-d-KXjerDe3BjVdOah8scgs-3aT6ZJ4uP2fvkdZFoSkVMOOGy6t-qBLWiJJpgg3VmBUUMU2KZshJbSTjXnNgScVGlyqhScyMY1ZLRIXg-790F_9OZNhZb3wXXnyywyFKWCp7ynkJnSgfftsHYYhfqbxUOBUbFUW_R6y2OeouL3r7ydK7Uxph_PMtIJjNE_wCaG3a5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874548646</pqid></control><display><type>article</type><title>The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants</title><source>IEEE/IET Electronic Library (IEL)</source><creator>Vereide, Kaspar ; Svingen, Bjornar ; Nielsen, Torbjorn Kristian ; Lia, Leif</creator><creatorcontrib>Vereide, Kaspar ; Svingen, Bjornar ; Nielsen, Torbjorn Kristian ; Lia, Leif</creatorcontrib><description>This paper investigates the effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. The work is intended to be practical, but includes some new research. The practical contributions include a methodology for a combined evaluation of the effects of installing surge tank throttles in hydropower plants, and a demonstration of the throttle effects through a case study. The research contributions include the evaluation of the throttle effect on power control, and a comparison of the throttle effects on power control for governor systems with speed feedback exclusively versus combined speed and power feedback. Field measurements are used to calibrate a numerical model of the case-study hydropower plant. The results from the case study show that the throttle has an insignificant positive impact on governor stability. Power control is improved when a throttle is installed; the overshoot of produced power and the time until steady-state conditions occur are reduced. The throttle has a significant effect on the hydraulic transients, and increases the water hammer and reduces the mass oscillations in the system.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2016.2614829</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Case studies ; Control stability ; Control systems ; Evaluation ; Feedback ; fluid dynamics ; Governors ; Hydraulic transients ; Hydraulics ; Hydroelectric plants ; Hydroelectric power ; Hydroelectric power generation ; Mathematical model ; Numerical models ; Oscillators ; Power control ; Power system stability ; stability analysis ; Surge tanks ; Surges ; Throttles ; Throttling ; Turbines ; Water hammer</subject><ispartof>IEEE transactions on energy conversion, 2017-03, Vol.32 (1), p.91-98</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-6269d201d83f8b2c21e1c7f8305132f5af91f9266c62fb068d4aeabc6e853c953</citedby><cites>FETCH-LOGICAL-c338t-6269d201d83f8b2c21e1c7f8305132f5af91f9266c62fb068d4aeabc6e853c953</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7727970$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Vereide, Kaspar</creatorcontrib><creatorcontrib>Svingen, Bjornar</creatorcontrib><creatorcontrib>Nielsen, Torbjorn Kristian</creatorcontrib><creatorcontrib>Lia, Leif</creatorcontrib><title>The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>This paper investigates the effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. The work is intended to be practical, but includes some new research. The practical contributions include a methodology for a combined evaluation of the effects of installing surge tank throttles in hydropower plants, and a demonstration of the throttle effects through a case study. The research contributions include the evaluation of the throttle effect on power control, and a comparison of the throttle effects on power control for governor systems with speed feedback exclusively versus combined speed and power feedback. Field measurements are used to calibrate a numerical model of the case-study hydropower plant. The results from the case study show that the throttle has an insignificant positive impact on governor stability. Power control is improved when a throttle is installed; the overshoot of produced power and the time until steady-state conditions occur are reduced. The throttle has a significant effect on the hydraulic transients, and increases the water hammer and reduces the mass oscillations in the system.</description><subject>Case studies</subject><subject>Control stability</subject><subject>Control systems</subject><subject>Evaluation</subject><subject>Feedback</subject><subject>fluid dynamics</subject><subject>Governors</subject><subject>Hydraulic transients</subject><subject>Hydraulics</subject><subject>Hydroelectric plants</subject><subject>Hydroelectric power</subject><subject>Hydroelectric power generation</subject><subject>Mathematical model</subject><subject>Numerical models</subject><subject>Oscillators</subject><subject>Power control</subject><subject>Power system stability</subject><subject>stability analysis</subject><subject>Surge tanks</subject><subject>Surges</subject><subject>Throttles</subject><subject>Throttling</subject><subject>Turbines</subject><subject>Water hammer</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBb9eZjyZNLmXMTRg4WL0uaZpsnTWZaerYv7f7wKsDL897DucB4BGjMcZIvuTTyZggzMeE41QQeQUGmDGRIMTkNRggIVgiJJe34K5ttwjhlBE8APt8Y-DUWqMj9BauurA2MFfuC-ab4GNsareG3sGZ_zXB-QBXUZV1U8fDCC793gQ48S4G34ygchWcH6qguqbWMA_KtbVxsYW1O-V-d-KXjerDe3BjVdOah8scgs-3aT6ZJ4uP2fvkdZFoSkVMOOGy6t-qBLWiJJpgg3VmBUUMU2KZshJbSTjXnNgScVGlyqhScyMY1ZLRIXg-790F_9OZNhZb3wXXnyywyFKWCp7ynkJnSgfftsHYYhfqbxUOBUbFUW_R6y2OeouL3r7ydK7Uxph_PMtIJjNE_wCaG3a5</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Vereide, Kaspar</creator><creator>Svingen, Bjornar</creator><creator>Nielsen, Torbjorn Kristian</creator><creator>Lia, Leif</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>201703</creationdate><title>The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants</title><author>Vereide, Kaspar ; Svingen, Bjornar ; Nielsen, Torbjorn Kristian ; Lia, Leif</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-6269d201d83f8b2c21e1c7f8305132f5af91f9266c62fb068d4aeabc6e853c953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Case studies</topic><topic>Control stability</topic><topic>Control systems</topic><topic>Evaluation</topic><topic>Feedback</topic><topic>fluid dynamics</topic><topic>Governors</topic><topic>Hydraulic transients</topic><topic>Hydraulics</topic><topic>Hydroelectric plants</topic><topic>Hydroelectric power</topic><topic>Hydroelectric power generation</topic><topic>Mathematical model</topic><topic>Numerical models</topic><topic>Oscillators</topic><topic>Power control</topic><topic>Power system stability</topic><topic>stability analysis</topic><topic>Surge tanks</topic><topic>Surges</topic><topic>Throttles</topic><topic>Throttling</topic><topic>Turbines</topic><topic>Water hammer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vereide, Kaspar</creatorcontrib><creatorcontrib>Svingen, Bjornar</creatorcontrib><creatorcontrib>Nielsen, Torbjorn Kristian</creatorcontrib><creatorcontrib>Lia, Leif</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vereide, Kaspar</au><au>Svingen, Bjornar</au><au>Nielsen, Torbjorn Kristian</au><au>Lia, Leif</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2017-03</date><risdate>2017</risdate><volume>32</volume><issue>1</issue><spage>91</spage><epage>98</epage><pages>91-98</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>This paper investigates the effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. The work is intended to be practical, but includes some new research. The practical contributions include a methodology for a combined evaluation of the effects of installing surge tank throttles in hydropower plants, and a demonstration of the throttle effects through a case study. The research contributions include the evaluation of the throttle effect on power control, and a comparison of the throttle effects on power control for governor systems with speed feedback exclusively versus combined speed and power feedback. Field measurements are used to calibrate a numerical model of the case-study hydropower plant. The results from the case study show that the throttle has an insignificant positive impact on governor stability. Power control is improved when a throttle is installed; the overshoot of produced power and the time until steady-state conditions occur are reduced. The throttle has a significant effect on the hydraulic transients, and increases the water hammer and reduces the mass oscillations in the system.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2016.2614829</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2017-03, Vol.32 (1), p.91-98
issn 0885-8969
1558-0059
language eng
recordid cdi_proquest_journals_1874548646
source IEEE/IET Electronic Library (IEL)
subjects Case studies
Control stability
Control systems
Evaluation
Feedback
fluid dynamics
Governors
Hydraulic transients
Hydraulics
Hydroelectric plants
Hydroelectric power
Hydroelectric power generation
Mathematical model
Numerical models
Oscillators
Power control
Power system stability
stability analysis
Surge tanks
Surges
Throttles
Throttling
Turbines
Water hammer
title The Effect of Surge Tank Throttling on Governor Stability, Power Control, and Hydraulic Transients in Hydropower Plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A42%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Effect%20of%20Surge%20Tank%20Throttling%20on%20Governor%20Stability,%20Power%20Control,%20and%20Hydraulic%20Transients%20in%20Hydropower%20Plants&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Vereide,%20Kaspar&rft.date=2017-03&rft.volume=32&rft.issue=1&rft.spage=91&rft.epage=98&rft.pages=91-98&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2016.2614829&rft_dat=%3Cproquest_ieee_%3E1874548646%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874548646&rft_id=info:pmid/&rft_ieee_id=7727970&rfr_iscdi=true