Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions

La/Ni-substituted strontium hexaferrite Sr 0.8 La 0.2 Ni x Fe 12- x O 19 ( x  = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of electronic materials 2017-04, Vol.46 (4), p.2112-2118
Hauptverfasser: Ghanbari, F., Arab, A., Shishe Bor, M., Mardaneh, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2118
container_issue 4
container_start_page 2112
container_title Journal of electronic materials
container_volume 46
creator Ghanbari, F.
Arab, A.
Shishe Bor, M.
Mardaneh, M. R.
description La/Ni-substituted strontium hexaferrite Sr 0.8 La 0.2 Ni x Fe 12- x O 19 ( x  = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x  = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe 3+ by Ni 2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.
doi_str_mv 10.1007/s11664-016-5140-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1874042411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4317425911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8346ebba45efc446a1fc39a18e91bbfd8e6ab2d9e2fd4ea7f84555691d5db1ff3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWP98AG8Bz7GZ3STdHqWoFWorqOAtZHcnJaVu1iQL9uJnN6UevHgaZub93gyPkCvgN8D5ZBwBlBKMg2ISBGe7IzICKUoGlXo_JiNeKmCyKOUpOYtxwzlIqGBEvp_MusPkGvocfI8hOYzUW7ow46VjL0Mdk0tDwpa-pOC75IYPOscvYzEEl5AuTed7k7Fmm8HngLnJ4npHZ74P2LjeJZOc76hJdNUn92G2edW1bj-MF-TEmm3Ey996Tt7u715nc7ZYPTzObhesKUElVpVCYV0bIdE2QigDtimnBiqcQl3btkJl6qKdYmFbgWZiKyGlVFNoZVuDteU5uT749sF_DhiT3vghdPmkhmoiuCgEQFbBQdUEH2NAq_uQHw47DVzvY9aHmHWOWe9j1rvMFAcmZm23xvDH-V_oB-2shF8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1874042411</pqid></control><display><type>article</type><title>Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ghanbari, F. ; Arab, A. ; Shishe Bor, M. ; Mardaneh, M. R.</creator><creatorcontrib>Ghanbari, F. ; Arab, A. ; Shishe Bor, M. ; Mardaneh, M. R.</creatorcontrib><description>La/Ni-substituted strontium hexaferrite Sr 0.8 La 0.2 Ni x Fe 12- x O 19 ( x  = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x  = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe 3+ by Ni 2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-016-5140-y</identifier><identifier>CODEN: JECMA5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Electronics ; Electronics and Microelectronics ; Instrumentation ; Magnetism ; Materials Science ; Nanoparticles ; Optical and Electronic Materials ; Solid State Physics</subject><ispartof>Journal of electronic materials, 2017-04, Vol.46 (4), p.2112-2118</ispartof><rights>The Minerals, Metals &amp; Materials Society 2016</rights><rights>Journal of Electronic Materials is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8346ebba45efc446a1fc39a18e91bbfd8e6ab2d9e2fd4ea7f84555691d5db1ff3</citedby><cites>FETCH-LOGICAL-c316t-8346ebba45efc446a1fc39a18e91bbfd8e6ab2d9e2fd4ea7f84555691d5db1ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11664-016-5140-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11664-016-5140-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ghanbari, F.</creatorcontrib><creatorcontrib>Arab, A.</creatorcontrib><creatorcontrib>Shishe Bor, M.</creatorcontrib><creatorcontrib>Mardaneh, M. R.</creatorcontrib><title>Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>La/Ni-substituted strontium hexaferrite Sr 0.8 La 0.2 Ni x Fe 12- x O 19 ( x  = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x  = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe 3+ by Ni 2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Electronics</subject><subject>Electronics and Microelectronics</subject><subject>Instrumentation</subject><subject>Magnetism</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Optical and Electronic Materials</subject><subject>Solid State Physics</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kE9LAzEQxYMoWP98AG8Bz7GZ3STdHqWoFWorqOAtZHcnJaVu1iQL9uJnN6UevHgaZub93gyPkCvgN8D5ZBwBlBKMg2ISBGe7IzICKUoGlXo_JiNeKmCyKOUpOYtxwzlIqGBEvp_MusPkGvocfI8hOYzUW7ow46VjL0Mdk0tDwpa-pOC75IYPOscvYzEEl5AuTed7k7Fmm8HngLnJ4npHZ74P2LjeJZOc76hJdNUn92G2edW1bj-MF-TEmm3Ey996Tt7u715nc7ZYPTzObhesKUElVpVCYV0bIdE2QigDtimnBiqcQl3btkJl6qKdYmFbgWZiKyGlVFNoZVuDteU5uT749sF_DhiT3vghdPmkhmoiuCgEQFbBQdUEH2NAq_uQHw47DVzvY9aHmHWOWe9j1rvMFAcmZm23xvDH-V_oB-2shF8</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Ghanbari, F.</creator><creator>Arab, A.</creator><creator>Shishe Bor, M.</creator><creator>Mardaneh, M. R.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions</title><author>Ghanbari, F. ; Arab, A. ; Shishe Bor, M. ; Mardaneh, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8346ebba45efc446a1fc39a18e91bbfd8e6ab2d9e2fd4ea7f84555691d5db1ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Electronics</topic><topic>Electronics and Microelectronics</topic><topic>Instrumentation</topic><topic>Magnetism</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Optical and Electronic Materials</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ghanbari, F.</creatorcontrib><creatorcontrib>Arab, A.</creatorcontrib><creatorcontrib>Shishe Bor, M.</creatorcontrib><creatorcontrib>Mardaneh, M. R.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ghanbari, F.</au><au>Arab, A.</au><au>Shishe Bor, M.</au><au>Mardaneh, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>46</volume><issue>4</issue><spage>2112</spage><epage>2118</epage><pages>2112-2118</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><coden>JECMA5</coden><abstract>La/Ni-substituted strontium hexaferrite Sr 0.8 La 0.2 Ni x Fe 12- x O 19 ( x  = 0.2 to 1.0 in steps of 0.2) nanoparticles have been produced by a coprecipitation method at reaction and calcination temperature of 80°C and 1200°C, respectively. X-ray diffraction (XRD) analysis confirmed formation of single-phase M-type hexaferrite structure. The average crystallite size and morphology of the nanoparticles were obtained from XRD analysis and transmission electron microscopy (TEM), respectively. The magnetic properties in magnetic field of 12 kOe obtained from room-temperature hysteresis loops revealed minimum and maximum magnetization for x  = 0.4 and 0.8, respectively, a behavior attributed to the ionic radii of the substituted cations, canted spin structure, electron hopping between cations, and the substitutional sites of the ions. It was also confirmed that the magnetization of nanoscale particles was lower than that of bulk material, which can be explained based on the different behavior of surface versus bulk atoms. The coercivity varied with x in a similar way to the magnetization, being related to sample anisotropy. In the M-type hexaferrite structure, substitution of Fe 3+ by Ni 2+ occurred at octahedral sites, making the greatest contribution to the anisotropy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-016-5140-y</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2017-04, Vol.46 (4), p.2112-2118
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_1874042411
source SpringerLink Journals - AutoHoldings
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Electronics
Electronics and Microelectronics
Instrumentation
Magnetism
Materials Science
Nanoparticles
Optical and Electronic Materials
Solid State Physics
title Magnetic Properties of La/Ni-Substituted Strontium Hexaferrite Nanoparticles Prepared by Coprecipitation at Optimal Conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A19%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20Properties%20of%20La/Ni-Substituted%20Strontium%20Hexaferrite%20Nanoparticles%20Prepared%20by%20Coprecipitation%20at%20Optimal%20Conditions&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Ghanbari,%20F.&rft.date=2017-04-01&rft.volume=46&rft.issue=4&rft.spage=2112&rft.epage=2118&rft.pages=2112-2118&rft.issn=0361-5235&rft.eissn=1543-186X&rft.coden=JECMA5&rft_id=info:doi/10.1007/s11664-016-5140-y&rft_dat=%3Cproquest_cross%3E4317425911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1874042411&rft_id=info:pmid/&rfr_iscdi=true