Further Studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation

We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of photovoltaics 2017-03, Vol.7 (2), p.437-443
Hauptverfasser: Jaewon Oh, Dauksher, Bill, Bowden, Stuart, Tamizhmani, Govindasamy, Hacke, Peter, D'Amico, John
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 443
container_issue 2
container_start_page 437
container_title IEEE journal of photovoltaics
container_volume 7
creator Jaewon Oh
Dauksher, Bill
Bowden, Stuart
Tamizhmani, Govindasamy
Hacke, Peter
D'Amico, John
description We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiNx refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-s was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 × 10 21 cm -3 ), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). The emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.
doi_str_mv 10.1109/JPHOTOV.2016.2642952
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1871908096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7814277</ieee_id><sourcerecordid>1871908096</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-39f27a3a01da6710364316380f1bad517dc4d597599f9908067376ffcd7c9dd3</originalsourceid><addsrcrecordid>eNo9kU9LAzEQxRdRUNRPoIeg563JZjfZHEXrP8QWLV5DTCY2ookmWanf3iytzmVm4PceM7yqOiZ4QggWZ3fzm9li9jxpMGGThrWN6Jqtaq8hHatpi-n230x7slsdpvSGSzHcMdbuVflqiHkJET3lwThIKHhUdjS1FnRGwaIn97BCj2Cj0tl9A7r1BlZIeYOmHy7nUboEyAVJLmXlNYwe85DBZ6fe68IPGgy6hNeojMou-INqx6r3BIebvl8trqaLi5v6fnZ9e3F-X-uW9rmmwjZcUYWJUYwTTFlLCaM9tuRFmY5wo1vTCd4JYYXAPWaccmatNlwLY-h-dbK2DSk7mbTLoJc6eF8-k4QyzFhfoNM19BnD1wApy7cwRF_OkqTnZLQVrFDtmtIxpBTBys_oPlT8kQTLMQa5iUGOMchNDEV2tJY5APiX8J60Def0F1CRg3A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1871908096</pqid></control><display><type>article</type><title>Further Studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation</title><source>IEEE Electronic Library (IEL)</source><creator>Jaewon Oh ; Dauksher, Bill ; Bowden, Stuart ; Tamizhmani, Govindasamy ; Hacke, Peter ; D'Amico, John</creator><creatorcontrib>Jaewon Oh ; Dauksher, Bill ; Bowden, Stuart ; Tamizhmani, Govindasamy ; Hacke, Peter ; D'Amico, John ; National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><description>We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiNx refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-s was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 × 10 21 cm -3 ), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). The emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2016.2642952</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Corona ; Degradation ; Durability ; high voltage ; Photovoltaic cells ; potential-induced degradation (PID) ; Refractive index ; reliability ; Resistance ; sheet resistance ; Silicon nitride ; silicon nitride (SiN&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; x ) ; silicon nitride (SiNx) ; Sodium ; SOLAR ENERGY</subject><ispartof>IEEE journal of photovoltaics, 2017-03, Vol.7 (2), p.437-443</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-39f27a3a01da6710364316380f1bad517dc4d597599f9908067376ffcd7c9dd3</citedby><cites>FETCH-LOGICAL-c438t-39f27a3a01da6710364316380f1bad517dc4d597599f9908067376ffcd7c9dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7814277$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7814277$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.osti.gov/servlets/purl/1360668$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Jaewon Oh</creatorcontrib><creatorcontrib>Dauksher, Bill</creatorcontrib><creatorcontrib>Bowden, Stuart</creatorcontrib><creatorcontrib>Tamizhmani, Govindasamy</creatorcontrib><creatorcontrib>Hacke, Peter</creatorcontrib><creatorcontrib>D'Amico, John</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><title>Further Studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiNx refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-s was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 × 10 21 cm -3 ), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). The emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.</description><subject>Corona</subject><subject>Degradation</subject><subject>Durability</subject><subject>high voltage</subject><subject>Photovoltaic cells</subject><subject>potential-induced degradation (PID)</subject><subject>Refractive index</subject><subject>reliability</subject><subject>Resistance</subject><subject>sheet resistance</subject><subject>Silicon nitride</subject><subject>silicon nitride (SiN&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; x )</subject><subject>silicon nitride (SiNx)</subject><subject>Sodium</subject><subject>SOLAR ENERGY</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kU9LAzEQxRdRUNRPoIeg563JZjfZHEXrP8QWLV5DTCY2ookmWanf3iytzmVm4PceM7yqOiZ4QggWZ3fzm9li9jxpMGGThrWN6Jqtaq8hHatpi-n230x7slsdpvSGSzHcMdbuVflqiHkJET3lwThIKHhUdjS1FnRGwaIn97BCj2Cj0tl9A7r1BlZIeYOmHy7nUboEyAVJLmXlNYwe85DBZ6fe68IPGgy6hNeojMou-INqx6r3BIebvl8trqaLi5v6fnZ9e3F-X-uW9rmmwjZcUYWJUYwTTFlLCaM9tuRFmY5wo1vTCd4JYYXAPWaccmatNlwLY-h-dbK2DSk7mbTLoJc6eF8-k4QyzFhfoNM19BnD1wApy7cwRF_OkqTnZLQVrFDtmtIxpBTBys_oPlT8kQTLMQa5iUGOMchNDEV2tJY5APiX8J60Def0F1CRg3A</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Jaewon Oh</creator><creator>Dauksher, Bill</creator><creator>Bowden, Stuart</creator><creator>Tamizhmani, Govindasamy</creator><creator>Hacke, Peter</creator><creator>D'Amico, John</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20170301</creationdate><title>Further Studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation</title><author>Jaewon Oh ; Dauksher, Bill ; Bowden, Stuart ; Tamizhmani, Govindasamy ; Hacke, Peter ; D'Amico, John</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-39f27a3a01da6710364316380f1bad517dc4d597599f9908067376ffcd7c9dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Corona</topic><topic>Degradation</topic><topic>Durability</topic><topic>high voltage</topic><topic>Photovoltaic cells</topic><topic>potential-induced degradation (PID)</topic><topic>Refractive index</topic><topic>reliability</topic><topic>Resistance</topic><topic>sheet resistance</topic><topic>Silicon nitride</topic><topic>silicon nitride (SiN&lt;italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"&gt; x )</topic><topic>silicon nitride (SiNx)</topic><topic>Sodium</topic><topic>SOLAR ENERGY</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jaewon Oh</creatorcontrib><creatorcontrib>Dauksher, Bill</creatorcontrib><creatorcontrib>Bowden, Stuart</creatorcontrib><creatorcontrib>Tamizhmani, Govindasamy</creatorcontrib><creatorcontrib>Hacke, Peter</creatorcontrib><creatorcontrib>D'Amico, John</creatorcontrib><creatorcontrib>National Renewable Energy Lab. (NREL), Golden, CO (United States)</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jaewon Oh</au><au>Dauksher, Bill</au><au>Bowden, Stuart</au><au>Tamizhmani, Govindasamy</au><au>Hacke, Peter</au><au>D'Amico, John</au><aucorp>National Renewable Energy Lab. (NREL), Golden, CO (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Further Studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>7</volume><issue>2</issue><spage>437</spage><epage>443</epage><pages>437-443</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>We present the impacts of silicon nitride (SiNx) antireflection coating refractive index and emitter sheet resistance on potential-induced degradation of the shunting type (PID-s). Previously, it has been shown that the cell becomes more PID-s-susceptible as the refractive index decreases or the emitter sheet resistance increases. To verify the effect of refractive index on PID-s, we fabricated cells with varying SiNx refractive index (1.87, 1.94, 2.05) on typical p-type base solar cells with ~60 Ω/sq emitters. However, none of these cells showed output power degradation, regardless of the refractive index. Further investigation of the emitter showed that the PID-s was suppressed at ~60 Ω/sq due to the extremely high surface phosphorus concentration (6 × 10 21 cm -3 ), as measured by secondary ion mass spectrometry. Furthermore, PID-s was observed on cells possessing a high emitter sheet resistance (~80 Ω/sq). The emitter surface phosphorus concentration plays an important role in determining PID-s susceptibility.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2016.2642952</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2017-03, Vol.7 (2), p.437-443
issn 2156-3381
2156-3403
language eng
recordid cdi_proquest_journals_1871908096
source IEEE Electronic Library (IEL)
subjects Corona
Degradation
Durability
high voltage
Photovoltaic cells
potential-induced degradation (PID)
Refractive index
reliability
Resistance
sheet resistance
Silicon nitride
silicon nitride (SiN<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> x )
silicon nitride (SiNx)
Sodium
SOLAR ENERGY
title Further Studies on the Effect of SiNx Refractive Index and Emitter Sheet Resistance on Potential-Induced Degradation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A07%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Further%20Studies%20on%20the%20Effect%20of%20SiNx%20Refractive%20Index%20and%20Emitter%20Sheet%20Resistance%20on%20Potential-Induced%20Degradation&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Jaewon%20Oh&rft.aucorp=National%20Renewable%20Energy%20Lab.%20(NREL),%20Golden,%20CO%20(United%20States)&rft.date=2017-03-01&rft.volume=7&rft.issue=2&rft.spage=437&rft.epage=443&rft.pages=437-443&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2016.2642952&rft_dat=%3Cproquest_RIE%3E1871908096%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1871908096&rft_id=info:pmid/&rft_ieee_id=7814277&rfr_iscdi=true