Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices
We present a new epoxy-based negative-tone dry film photoresist (DFR) for fabricating multilayer microfluidic devices using a lamination process combined with a standard photolithography technology. As proof-of-concept, a complex 3D-hydrodynamic focusing device was produced via a six-layer laminatio...
Gespeichert in:
Veröffentlicht in: | Microfluidics and nanofluidics 2017-03, Vol.21 (3), p.1, Article 41 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Microfluidics and nanofluidics |
container_volume | 21 |
creator | El Hasni, Akram Pfirrmann, Stefan Kolander, Anett Yacoub-George, Erwin König, Martin Landesberger, Christof Voigt, Anja Grützner, Gabi Schnakenberg, Uwe |
description | We present a new epoxy-based negative-tone dry film photoresist (DFR) for fabricating multilayer microfluidic devices using a lamination process combined with a standard photolithography technology. As proof-of-concept, a complex 3D-hydrodynamic focusing device was produced via a six-layer lamination process of 33 µm-thick DFR layers. The bonding strength of the new DFR was tested on silicon, glass, and titanium substrates, respectively. A maximum bonding strength of 37 MPa was obtained for the dry film photoresist laminated on glass. No leakage was found, and burst tests proved excellent robustness and sealing reliability of the microchannels. |
doi_str_mv | 10.1007/s10404-017-1877-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1871457957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4316904941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-5e91b7fba815d924b5506043bf49ba3b50d403a80f603055b1404ae2eae796d53</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMYztOlqg8pUosgLXlJHZxlcTBTkv797gKQmxYzYzm3nkchC4pXFMAeRMpcOAEqCS0kJIUR2hGc8oIL0s4_s2L7BSdxbgG4DKjMEPDq9uRVu9NwK3uXK9H53vsLda4N1-4CXtsXdulYpVaW0NG3xs8fPjRBxNdHLH1AVtdBVcnQb_Cte-G1uwwu8Odq4O37cY1rsaN2braxHN0YnUbzcVPnKP3h_u3xRNZvjw-L26XpGZFNhJhSlpJW-mCiqbMeCUE5MBZZXlZaVYJaDgwXYDNgYEQFU3va5MZbWSZN4LN0dU0dwj-c2PiqNZ-E_q0UiVAlAtZCplUdFKlQ2MMxqohuE6HvaKgDmDVBFYlsAefVEXyZJMnJm2_MuHP5H9N3z_Ee_8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1871457957</pqid></control><display><type>article</type><title>Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices</title><source>Springer Nature - Complete Springer Journals</source><creator>El Hasni, Akram ; Pfirrmann, Stefan ; Kolander, Anett ; Yacoub-George, Erwin ; König, Martin ; Landesberger, Christof ; Voigt, Anja ; Grützner, Gabi ; Schnakenberg, Uwe</creator><creatorcontrib>El Hasni, Akram ; Pfirrmann, Stefan ; Kolander, Anett ; Yacoub-George, Erwin ; König, Martin ; Landesberger, Christof ; Voigt, Anja ; Grützner, Gabi ; Schnakenberg, Uwe</creatorcontrib><description>We present a new epoxy-based negative-tone dry film photoresist (DFR) for fabricating multilayer microfluidic devices using a lamination process combined with a standard photolithography technology. As proof-of-concept, a complex 3D-hydrodynamic focusing device was produced via a six-layer lamination process of 33 µm-thick DFR layers. The bonding strength of the new DFR was tested on silicon, glass, and titanium substrates, respectively. A maximum bonding strength of 37 MPa was obtained for the dry film photoresist laminated on glass. No leakage was found, and burst tests proved excellent robustness and sealing reliability of the microchannels.</description><identifier>ISSN: 1613-4982</identifier><identifier>EISSN: 1613-4990</identifier><identifier>DOI: 10.1007/s10404-017-1877-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Biomedical Engineering and Bioengineering ; Engineering ; Engineering Fluid Dynamics ; Nanotechnology and Microengineering ; Research Paper</subject><ispartof>Microfluidics and nanofluidics, 2017-03, Vol.21 (3), p.1, Article 41</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Microfluidics and Nanofluidics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-5e91b7fba815d924b5506043bf49ba3b50d403a80f603055b1404ae2eae796d53</citedby><cites>FETCH-LOGICAL-c382t-5e91b7fba815d924b5506043bf49ba3b50d403a80f603055b1404ae2eae796d53</cites><orcidid>0000-0003-0522-8306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10404-017-1877-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10404-017-1877-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>El Hasni, Akram</creatorcontrib><creatorcontrib>Pfirrmann, Stefan</creatorcontrib><creatorcontrib>Kolander, Anett</creatorcontrib><creatorcontrib>Yacoub-George, Erwin</creatorcontrib><creatorcontrib>König, Martin</creatorcontrib><creatorcontrib>Landesberger, Christof</creatorcontrib><creatorcontrib>Voigt, Anja</creatorcontrib><creatorcontrib>Grützner, Gabi</creatorcontrib><creatorcontrib>Schnakenberg, Uwe</creatorcontrib><title>Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices</title><title>Microfluidics and nanofluidics</title><addtitle>Microfluid Nanofluid</addtitle><description>We present a new epoxy-based negative-tone dry film photoresist (DFR) for fabricating multilayer microfluidic devices using a lamination process combined with a standard photolithography technology. As proof-of-concept, a complex 3D-hydrodynamic focusing device was produced via a six-layer lamination process of 33 µm-thick DFR layers. The bonding strength of the new DFR was tested on silicon, glass, and titanium substrates, respectively. A maximum bonding strength of 37 MPa was obtained for the dry film photoresist laminated on glass. No leakage was found, and burst tests proved excellent robustness and sealing reliability of the microchannels.</description><subject>Analytical Chemistry</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Engineering</subject><subject>Engineering Fluid Dynamics</subject><subject>Nanotechnology and Microengineering</subject><subject>Research Paper</subject><issn>1613-4982</issn><issn>1613-4990</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMYztOlqg8pUosgLXlJHZxlcTBTkv797gKQmxYzYzm3nkchC4pXFMAeRMpcOAEqCS0kJIUR2hGc8oIL0s4_s2L7BSdxbgG4DKjMEPDq9uRVu9NwK3uXK9H53vsLda4N1-4CXtsXdulYpVaW0NG3xs8fPjRBxNdHLH1AVtdBVcnQb_Cte-G1uwwu8Odq4O37cY1rsaN2braxHN0YnUbzcVPnKP3h_u3xRNZvjw-L26XpGZFNhJhSlpJW-mCiqbMeCUE5MBZZXlZaVYJaDgwXYDNgYEQFU3va5MZbWSZN4LN0dU0dwj-c2PiqNZ-E_q0UiVAlAtZCplUdFKlQ2MMxqohuE6HvaKgDmDVBFYlsAefVEXyZJMnJm2_MuHP5H9N3z_Ee_8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>El Hasni, Akram</creator><creator>Pfirrmann, Stefan</creator><creator>Kolander, Anett</creator><creator>Yacoub-George, Erwin</creator><creator>König, Martin</creator><creator>Landesberger, Christof</creator><creator>Voigt, Anja</creator><creator>Grützner, Gabi</creator><creator>Schnakenberg, Uwe</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M7S</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0003-0522-8306</orcidid></search><sort><creationdate>20170301</creationdate><title>Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices</title><author>El Hasni, Akram ; Pfirrmann, Stefan ; Kolander, Anett ; Yacoub-George, Erwin ; König, Martin ; Landesberger, Christof ; Voigt, Anja ; Grützner, Gabi ; Schnakenberg, Uwe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-5e91b7fba815d924b5506043bf49ba3b50d403a80f603055b1404ae2eae796d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Engineering</topic><topic>Engineering Fluid Dynamics</topic><topic>Nanotechnology and Microengineering</topic><topic>Research Paper</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>El Hasni, Akram</creatorcontrib><creatorcontrib>Pfirrmann, Stefan</creatorcontrib><creatorcontrib>Kolander, Anett</creatorcontrib><creatorcontrib>Yacoub-George, Erwin</creatorcontrib><creatorcontrib>König, Martin</creatorcontrib><creatorcontrib>Landesberger, Christof</creatorcontrib><creatorcontrib>Voigt, Anja</creatorcontrib><creatorcontrib>Grützner, Gabi</creatorcontrib><creatorcontrib>Schnakenberg, Uwe</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Microfluidics and nanofluidics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>El Hasni, Akram</au><au>Pfirrmann, Stefan</au><au>Kolander, Anett</au><au>Yacoub-George, Erwin</au><au>König, Martin</au><au>Landesberger, Christof</au><au>Voigt, Anja</au><au>Grützner, Gabi</au><au>Schnakenberg, Uwe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices</atitle><jtitle>Microfluidics and nanofluidics</jtitle><stitle>Microfluid Nanofluid</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>1</spage><pages>1-</pages><artnum>41</artnum><issn>1613-4982</issn><eissn>1613-4990</eissn><abstract>We present a new epoxy-based negative-tone dry film photoresist (DFR) for fabricating multilayer microfluidic devices using a lamination process combined with a standard photolithography technology. As proof-of-concept, a complex 3D-hydrodynamic focusing device was produced via a six-layer lamination process of 33 µm-thick DFR layers. The bonding strength of the new DFR was tested on silicon, glass, and titanium substrates, respectively. A maximum bonding strength of 37 MPa was obtained for the dry film photoresist laminated on glass. No leakage was found, and burst tests proved excellent robustness and sealing reliability of the microchannels.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10404-017-1877-8</doi><orcidid>https://orcid.org/0000-0003-0522-8306</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-4982 |
ispartof | Microfluidics and nanofluidics, 2017-03, Vol.21 (3), p.1, Article 41 |
issn | 1613-4982 1613-4990 |
language | eng |
recordid | cdi_proquest_journals_1871457957 |
source | Springer Nature - Complete Springer Journals |
subjects | Analytical Chemistry Biomedical Engineering and Bioengineering Engineering Engineering Fluid Dynamics Nanotechnology and Microengineering Research Paper |
title | Six-layer lamination of a new dry film negative-tone photoresist for fabricating complex 3D microfluidic devices |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T16%3A29%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Six-layer%20lamination%20of%20a%20new%20dry%20film%20negative-tone%20photoresist%20for%20fabricating%20complex%203D%20microfluidic%20devices&rft.jtitle=Microfluidics%20and%20nanofluidics&rft.au=El%20Hasni,%20Akram&rft.date=2017-03-01&rft.volume=21&rft.issue=3&rft.spage=1&rft.pages=1-&rft.artnum=41&rft.issn=1613-4982&rft.eissn=1613-4990&rft_id=info:doi/10.1007/s10404-017-1877-8&rft_dat=%3Cproquest_cross%3E4316904941%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1871457957&rft_id=info:pmid/&rfr_iscdi=true |