Creep properties of a powder metallurgy disk superalloy at 700 °C
As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress...
Gespeichert in:
Veröffentlicht in: | Journal of materials research 2017-02, Vol.32 (3), p.624-633 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 633 |
---|---|
container_issue | 3 |
container_start_page | 624 |
container_title | Journal of materials research |
container_volume | 32 |
creator | Dong, Kaixin Yuan, Chao Gao, Shuang Jia, Chonglin Guo, Jianting Ge, Changchun |
description | As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors. |
doi_str_mv | 10.1557/jmr.2016.510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1867907897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2016_510</cupid><sourcerecordid>4313554571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4MouK7efICAV1snaT6PWvyCBS96DmmTLl2325q0yL6Vz-CTmWX34EFwLgPDb_4z_BC6JJATzuXNqgs5BSJyTuAIzSgwlvGCimM0A6VYRjVhp-gsxhUA4SDZDN2VwfsBD6EffBhbH3HfYIuH_tP5gDs_2vV6Csstdm18x3FKVJr0W2xHLAHw91d5jk4au47-4tDn6O3h_rV8yhYvj8_l7SKrqaaQcW1JJZxUqtIFrSpZMN0wBQxcwXlRWw5NZRVxQBQIqrQgvJHCWcIJK1LN0dU-Nz37Mfk4mlU_hU06aYgSUoNUWibqek_VoY8x-MYMoe1s2BoCZmfJJEtmZ8kkSwnP9nhM2Gbpw6_Qv_n8EG-7KrRu6f9Z-AELf3Z-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867907897</pqid></control><display><type>article</type><title>Creep properties of a powder metallurgy disk superalloy at 700 °C</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Dong, Kaixin ; Yuan, Chao ; Gao, Shuang ; Jia, Chonglin ; Guo, Jianting ; Ge, Changchun</creator><creatorcontrib>Dong, Kaixin ; Yuan, Chao ; Gao, Shuang ; Jia, Chonglin ; Guo, Jianting ; Ge, Changchun</creatorcontrib><description>As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2016.510</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Analysis ; Applied and Technical Physics ; Biomaterials ; Cooling ; Creep tests ; Design ; Fracture mechanics ; Grain size ; Heat ; Inorganic Chemistry ; Investigations ; Materials creep ; Materials Engineering ; Materials research ; Materials Science ; Metal fatigue ; Microstructure ; Nanotechnology ; Powder metallurgy ; Spray forming ; Stress state ; Studies ; Superalloys ; Temperature ; Turbines</subject><ispartof>Journal of materials research, 2017-02, Vol.32 (3), p.624-633</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</citedby><cites>FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</cites><orcidid>0000-0002-3703-0807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2016.510$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291416005100/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,782,786,27933,27934,41497,42566,51328,55637</link.rule.ids></links><search><creatorcontrib>Dong, Kaixin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Gao, Shuang</creatorcontrib><creatorcontrib>Jia, Chonglin</creatorcontrib><creatorcontrib>Guo, Jianting</creatorcontrib><creatorcontrib>Ge, Changchun</creatorcontrib><title>Creep properties of a powder metallurgy disk superalloy at 700 °C</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Cooling</subject><subject>Creep tests</subject><subject>Design</subject><subject>Fracture mechanics</subject><subject>Grain size</subject><subject>Heat</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Materials creep</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Powder metallurgy</subject><subject>Spray forming</subject><subject>Stress state</subject><subject>Studies</subject><subject>Superalloys</subject><subject>Temperature</subject><subject>Turbines</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KxDAQx4MouK7efICAV1snaT6PWvyCBS96DmmTLl2325q0yL6Vz-CTmWX34EFwLgPDb_4z_BC6JJATzuXNqgs5BSJyTuAIzSgwlvGCimM0A6VYRjVhp-gsxhUA4SDZDN2VwfsBD6EffBhbH3HfYIuH_tP5gDs_2vV6Csstdm18x3FKVJr0W2xHLAHw91d5jk4au47-4tDn6O3h_rV8yhYvj8_l7SKrqaaQcW1JJZxUqtIFrSpZMN0wBQxcwXlRWw5NZRVxQBQIqrQgvJHCWcIJK1LN0dU-Nz37Mfk4mlU_hU06aYgSUoNUWibqek_VoY8x-MYMoe1s2BoCZmfJJEtmZ8kkSwnP9nhM2Gbpw6_Qv_n8EG-7KrRu6f9Z-AELf3Z-</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Dong, Kaixin</creator><creator>Yuan, Chao</creator><creator>Gao, Shuang</creator><creator>Jia, Chonglin</creator><creator>Guo, Jianting</creator><creator>Ge, Changchun</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-3703-0807</orcidid></search><sort><creationdate>20170214</creationdate><title>Creep properties of a powder metallurgy disk superalloy at 700 °C</title><author>Dong, Kaixin ; Yuan, Chao ; Gao, Shuang ; Jia, Chonglin ; Guo, Jianting ; Ge, Changchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Cooling</topic><topic>Creep tests</topic><topic>Design</topic><topic>Fracture mechanics</topic><topic>Grain size</topic><topic>Heat</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Materials creep</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Powder metallurgy</topic><topic>Spray forming</topic><topic>Stress state</topic><topic>Studies</topic><topic>Superalloys</topic><topic>Temperature</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Kaixin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Gao, Shuang</creatorcontrib><creatorcontrib>Jia, Chonglin</creatorcontrib><creatorcontrib>Guo, Jianting</creatorcontrib><creatorcontrib>Ge, Changchun</creatorcontrib><collection>CrossRef</collection><collection>Global News & ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Kaixin</au><au>Yuan, Chao</au><au>Gao, Shuang</au><au>Jia, Chonglin</au><au>Guo, Jianting</au><au>Ge, Changchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep properties of a powder metallurgy disk superalloy at 700 °C</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>32</volume><issue>3</issue><spage>624</spage><epage>633</epage><pages>624-633</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2016.510</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3703-0807</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0884-2914 |
ispartof | Journal of materials research, 2017-02, Vol.32 (3), p.624-633 |
issn | 0884-2914 2044-5326 |
language | eng |
recordid | cdi_proquest_journals_1867907897 |
source | SpringerNature Journals; Cambridge University Press Journals Complete |
subjects | Alloys Analysis Applied and Technical Physics Biomaterials Cooling Creep tests Design Fracture mechanics Grain size Heat Inorganic Chemistry Investigations Materials creep Materials Engineering Materials research Materials Science Metal fatigue Microstructure Nanotechnology Powder metallurgy Spray forming Stress state Studies Superalloys Temperature Turbines |
title | Creep properties of a powder metallurgy disk superalloy at 700 °C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20properties%20of%20a%20powder%20metallurgy%20disk%20superalloy%20at%20700%20%C2%B0C&rft.jtitle=Journal%20of%20materials%20research&rft.au=Dong,%20Kaixin&rft.date=2017-02-14&rft.volume=32&rft.issue=3&rft.spage=624&rft.epage=633&rft.pages=624-633&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2016.510&rft_dat=%3Cproquest_cross%3E4313554571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867907897&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2016_510&rfr_iscdi=true |