Creep properties of a powder metallurgy disk superalloy at 700 °C

As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2017-02, Vol.32 (3), p.624-633
Hauptverfasser: Dong, Kaixin, Yuan, Chao, Gao, Shuang, Jia, Chonglin, Guo, Jianting, Ge, Changchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 633
container_issue 3
container_start_page 624
container_title Journal of materials research
container_volume 32
creator Dong, Kaixin
Yuan, Chao
Gao, Shuang
Jia, Chonglin
Guo, Jianting
Ge, Changchun
description As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.
doi_str_mv 10.1557/jmr.2016.510
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1867907897</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1557_jmr_2016_510</cupid><sourcerecordid>4313554571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</originalsourceid><addsrcrecordid>eNqFkM1KxDAQx4MouK7efICAV1snaT6PWvyCBS96DmmTLl2325q0yL6Vz-CTmWX34EFwLgPDb_4z_BC6JJATzuXNqgs5BSJyTuAIzSgwlvGCimM0A6VYRjVhp-gsxhUA4SDZDN2VwfsBD6EffBhbH3HfYIuH_tP5gDs_2vV6Csstdm18x3FKVJr0W2xHLAHw91d5jk4au47-4tDn6O3h_rV8yhYvj8_l7SKrqaaQcW1JJZxUqtIFrSpZMN0wBQxcwXlRWw5NZRVxQBQIqrQgvJHCWcIJK1LN0dU-Nz37Mfk4mlU_hU06aYgSUoNUWibqek_VoY8x-MYMoe1s2BoCZmfJJEtmZ8kkSwnP9nhM2Gbpw6_Qv_n8EG-7KrRu6f9Z-AELf3Z-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867907897</pqid></control><display><type>article</type><title>Creep properties of a powder metallurgy disk superalloy at 700 °C</title><source>SpringerNature Journals</source><source>Cambridge University Press Journals Complete</source><creator>Dong, Kaixin ; Yuan, Chao ; Gao, Shuang ; Jia, Chonglin ; Guo, Jianting ; Ge, Changchun</creator><creatorcontrib>Dong, Kaixin ; Yuan, Chao ; Gao, Shuang ; Jia, Chonglin ; Guo, Jianting ; Ge, Changchun</creatorcontrib><description>As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.</description><identifier>ISSN: 0884-2914</identifier><identifier>EISSN: 2044-5326</identifier><identifier>DOI: 10.1557/jmr.2016.510</identifier><identifier>CODEN: JMREEE</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Alloys ; Analysis ; Applied and Technical Physics ; Biomaterials ; Cooling ; Creep tests ; Design ; Fracture mechanics ; Grain size ; Heat ; Inorganic Chemistry ; Investigations ; Materials creep ; Materials Engineering ; Materials research ; Materials Science ; Metal fatigue ; Microstructure ; Nanotechnology ; Powder metallurgy ; Spray forming ; Stress state ; Studies ; Superalloys ; Temperature ; Turbines</subject><ispartof>Journal of materials research, 2017-02, Vol.32 (3), p.624-633</ispartof><rights>Copyright © Materials Research Society 2017</rights><rights>The Materials Research Society 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</citedby><cites>FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</cites><orcidid>0000-0002-3703-0807</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1557/jmr.2016.510$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0884291416005100/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,315,782,786,27933,27934,41497,42566,51328,55637</link.rule.ids></links><search><creatorcontrib>Dong, Kaixin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Gao, Shuang</creatorcontrib><creatorcontrib>Jia, Chonglin</creatorcontrib><creatorcontrib>Guo, Jianting</creatorcontrib><creatorcontrib>Ge, Changchun</creatorcontrib><title>Creep properties of a powder metallurgy disk superalloy at 700 °C</title><title>Journal of materials research</title><addtitle>Journal of Materials Research</addtitle><addtitle>J. Mater. Res</addtitle><description>As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.</description><subject>Alloys</subject><subject>Analysis</subject><subject>Applied and Technical Physics</subject><subject>Biomaterials</subject><subject>Cooling</subject><subject>Creep tests</subject><subject>Design</subject><subject>Fracture mechanics</subject><subject>Grain size</subject><subject>Heat</subject><subject>Inorganic Chemistry</subject><subject>Investigations</subject><subject>Materials creep</subject><subject>Materials Engineering</subject><subject>Materials research</subject><subject>Materials Science</subject><subject>Metal fatigue</subject><subject>Microstructure</subject><subject>Nanotechnology</subject><subject>Powder metallurgy</subject><subject>Spray forming</subject><subject>Stress state</subject><subject>Studies</subject><subject>Superalloys</subject><subject>Temperature</subject><subject>Turbines</subject><issn>0884-2914</issn><issn>2044-5326</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqFkM1KxDAQx4MouK7efICAV1snaT6PWvyCBS96DmmTLl2325q0yL6Vz-CTmWX34EFwLgPDb_4z_BC6JJATzuXNqgs5BSJyTuAIzSgwlvGCimM0A6VYRjVhp-gsxhUA4SDZDN2VwfsBD6EffBhbH3HfYIuH_tP5gDs_2vV6Csstdm18x3FKVJr0W2xHLAHw91d5jk4au47-4tDn6O3h_rV8yhYvj8_l7SKrqaaQcW1JJZxUqtIFrSpZMN0wBQxcwXlRWw5NZRVxQBQIqrQgvJHCWcIJK1LN0dU-Nz37Mfk4mlU_hU06aYgSUoNUWibqek_VoY8x-MYMoe1s2BoCZmfJJEtmZ8kkSwnP9nhM2Gbpw6_Qv_n8EG-7KrRu6f9Z-AELf3Z-</recordid><startdate>20170214</startdate><enddate>20170214</enddate><creator>Dong, Kaixin</creator><creator>Yuan, Chao</creator><creator>Gao, Shuang</creator><creator>Jia, Chonglin</creator><creator>Guo, Jianting</creator><creator>Ge, Changchun</creator><general>Cambridge University Press</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7SR</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K60</scope><scope>K6~</scope><scope>KB.</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>PDBOC</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-3703-0807</orcidid></search><sort><creationdate>20170214</creationdate><title>Creep properties of a powder metallurgy disk superalloy at 700 °C</title><author>Dong, Kaixin ; Yuan, Chao ; Gao, Shuang ; Jia, Chonglin ; Guo, Jianting ; Ge, Changchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2920-59a1b6d788b932bb7349f48040d3553ca50fba81d01806289615f76da15143333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Analysis</topic><topic>Applied and Technical Physics</topic><topic>Biomaterials</topic><topic>Cooling</topic><topic>Creep tests</topic><topic>Design</topic><topic>Fracture mechanics</topic><topic>Grain size</topic><topic>Heat</topic><topic>Inorganic Chemistry</topic><topic>Investigations</topic><topic>Materials creep</topic><topic>Materials Engineering</topic><topic>Materials research</topic><topic>Materials Science</topic><topic>Metal fatigue</topic><topic>Microstructure</topic><topic>Nanotechnology</topic><topic>Powder metallurgy</topic><topic>Spray forming</topic><topic>Stress state</topic><topic>Studies</topic><topic>Superalloys</topic><topic>Temperature</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dong, Kaixin</creatorcontrib><creatorcontrib>Yuan, Chao</creatorcontrib><creatorcontrib>Gao, Shuang</creatorcontrib><creatorcontrib>Jia, Chonglin</creatorcontrib><creatorcontrib>Guo, Jianting</creatorcontrib><creatorcontrib>Ge, Changchun</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Materials Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Materials Science Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of materials research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dong, Kaixin</au><au>Yuan, Chao</au><au>Gao, Shuang</au><au>Jia, Chonglin</au><au>Guo, Jianting</au><au>Ge, Changchun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep properties of a powder metallurgy disk superalloy at 700 °C</atitle><jtitle>Journal of materials research</jtitle><stitle>Journal of Materials Research</stitle><addtitle>J. Mater. Res</addtitle><date>2017-02-14</date><risdate>2017</risdate><volume>32</volume><issue>3</issue><spage>624</spage><epage>633</epage><pages>624-633</pages><issn>0884-2914</issn><eissn>2044-5326</eissn><coden>JMREEE</coden><abstract>As the operating temperature of disk service was elevated from 650 °C to 700 °C, the creep properties urged to be paid attention. To investigate the creep properties of spray-formed low solvus, high refractory (LSHR) superalloy at about 700 °C, creep tests were conducted under seven different stress ranging from 690 MPa to 897 MPa. By means of creep curves and fracture microstructure observation, the creep behaviors and fracture mechanisms of spray-formed LSHR were analyzed. Stress exponent of the alloy was comparable to other disk superalloys such as Waspaloy and Inconel 718. It was interesting to find a transition in the creep behavior in two stress regimes. The contribution of grain boundary sliding in the low stress regime was greater than that in the higher stress. Under higher stress microcracks initiated along the intragranular slip bands because of strain concentration. The spray-forming LSHR exhibited a good creep resistance at low stress compared with other two superalloys by using Larson–Miller parameter, which was consistent with the transition of fracture behaviors.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1557/jmr.2016.510</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3703-0807</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0884-2914
ispartof Journal of materials research, 2017-02, Vol.32 (3), p.624-633
issn 0884-2914
2044-5326
language eng
recordid cdi_proquest_journals_1867907897
source SpringerNature Journals; Cambridge University Press Journals Complete
subjects Alloys
Analysis
Applied and Technical Physics
Biomaterials
Cooling
Creep tests
Design
Fracture mechanics
Grain size
Heat
Inorganic Chemistry
Investigations
Materials creep
Materials Engineering
Materials research
Materials Science
Metal fatigue
Microstructure
Nanotechnology
Powder metallurgy
Spray forming
Stress state
Studies
Superalloys
Temperature
Turbines
title Creep properties of a powder metallurgy disk superalloy at 700 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-02T06%3A07%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20properties%20of%20a%20powder%20metallurgy%20disk%20superalloy%20at%20700%20%C2%B0C&rft.jtitle=Journal%20of%20materials%20research&rft.au=Dong,%20Kaixin&rft.date=2017-02-14&rft.volume=32&rft.issue=3&rft.spage=624&rft.epage=633&rft.pages=624-633&rft.issn=0884-2914&rft.eissn=2044-5326&rft.coden=JMREEE&rft_id=info:doi/10.1557/jmr.2016.510&rft_dat=%3Cproquest_cross%3E4313554571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867907897&rft_id=info:pmid/&rft_cupid=10_1557_jmr_2016_510&rfr_iscdi=true