Exact Analytical Solutions for Contaminant Transport in Rivers

Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Hydrology and Hydromechanics 2013-09, Vol.61 (3), p.250-259
Hauptverfasser: Genuchten, Martinus Th. van, Leij, Feike J., Skaggs, Todd H., Toride, Nobuo, Bradford, Scott A., Pontedeiro, Elizabeth M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 259
container_issue 3
container_start_page 250
container_title Journal of Hydrology and Hydromechanics
container_volume 61
creator Genuchten, Martinus Th. van
Leij, Feike J.
Skaggs, Todd H.
Toride, Nobuo
Bradford, Scott A.
Pontedeiro, Elizabeth M.
description Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or river and zones with dead water (transient storage models), and to problems involving longitudinal advectivedispersive transport with simultaneous diffusion in fluvial sediments or near-stream subsurface regions comprising a hyporheic zone. Part 2 also provides solutions for one-dimensional advective-dispersive transport of contaminants subject to consecutive decay chain reactions.
doi_str_mv 10.2478/johh-2013-0032
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_1865287158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_0e845d1021fa43a188e6370dd4b91500</doaj_id><sourcerecordid>4312425441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3370-ccfa75d43c342a42e6a4326a5b32a294e66934a0d1327ab4fe7e79027daa35473</originalsourceid><addsrcrecordid>eNo9kFFLwzAUhYMoOKevPhd87kxy0yZ9EcaYczAQdIJv4a5NXUvXzCQT9-9Nnfh04XI45-Mj5JbRCRdS3bd2u005ZZBSCvyMjBiASgUAnJMRpYKnsqDvl-TK-5bSPOOSj8jD_BvLkEx77I6hKbFLXm13CI3tfVJbl8xsH3DX9NiHZO2w93vrQtL0yUvzZZy_Jhc1dt7c_N0xeXucr2dP6ep5sZxNV2kJIGlaljXKrBJQguAouMlRAM8x2wBHXgiT5wUIpBUDLnEjaiNNhOWyQoRMSBiT5am3stjqvWt26I7aYqN_H9Z9aHSRvzOaGiWyilHO6jiCTCmTR4aqEpuCZVHNmNyduvbOfh6MD7q1BxcFeM1U1KIky1RMTU6p0lnvnan_VxnVg289-NaDbz34hh8A1HGv</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865287158</pqid></control><display><type>article</type><title>Exact Analytical Solutions for Contaminant Transport in Rivers</title><source>De Gruyter Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Genuchten, Martinus Th. van ; Leij, Feike J. ; Skaggs, Todd H. ; Toride, Nobuo ; Bradford, Scott A. ; Pontedeiro, Elizabeth M.</creator><creatorcontrib>Genuchten, Martinus Th. van ; Leij, Feike J. ; Skaggs, Todd H. ; Toride, Nobuo ; Bradford, Scott A. ; Pontedeiro, Elizabeth M.</creatorcontrib><description>Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or river and zones with dead water (transient storage models), and to problems involving longitudinal advectivedispersive transport with simultaneous diffusion in fluvial sediments or near-stream subsurface regions comprising a hyporheic zone. Part 2 also provides solutions for one-dimensional advective-dispersive transport of contaminants subject to consecutive decay chain reactions.</description><identifier>ISSN: 0042-790X</identifier><identifier>EISSN: 1338-4333</identifier><identifier>DOI: 10.2478/johh-2013-0032</identifier><language>eng</language><publisher>Bratislava: De Gruyter Poland</publisher><subject>analytical solutions ; contaminant transport ; Creeks &amp; streams ; Equilibrium ; Partial differential equations ; Rivers ; Sediments ; solute decay chains ; Surface water ; transient storage models</subject><ispartof>Journal of Hydrology and Hydromechanics, 2013-09, Vol.61 (3), p.250-259</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2013</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3370-ccfa75d43c342a42e6a4326a5b32a294e66934a0d1327ab4fe7e79027daa35473</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Genuchten, Martinus Th. van</creatorcontrib><creatorcontrib>Leij, Feike J.</creatorcontrib><creatorcontrib>Skaggs, Todd H.</creatorcontrib><creatorcontrib>Toride, Nobuo</creatorcontrib><creatorcontrib>Bradford, Scott A.</creatorcontrib><creatorcontrib>Pontedeiro, Elizabeth M.</creatorcontrib><title>Exact Analytical Solutions for Contaminant Transport in Rivers</title><title>Journal of Hydrology and Hydromechanics</title><description>Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or river and zones with dead water (transient storage models), and to problems involving longitudinal advectivedispersive transport with simultaneous diffusion in fluvial sediments or near-stream subsurface regions comprising a hyporheic zone. Part 2 also provides solutions for one-dimensional advective-dispersive transport of contaminants subject to consecutive decay chain reactions.</description><subject>analytical solutions</subject><subject>contaminant transport</subject><subject>Creeks &amp; streams</subject><subject>Equilibrium</subject><subject>Partial differential equations</subject><subject>Rivers</subject><subject>Sediments</subject><subject>solute decay chains</subject><subject>Surface water</subject><subject>transient storage models</subject><issn>0042-790X</issn><issn>1338-4333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNo9kFFLwzAUhYMoOKevPhd87kxy0yZ9EcaYczAQdIJv4a5NXUvXzCQT9-9Nnfh04XI45-Mj5JbRCRdS3bd2u005ZZBSCvyMjBiASgUAnJMRpYKnsqDvl-TK-5bSPOOSj8jD_BvLkEx77I6hKbFLXm13CI3tfVJbl8xsH3DX9NiHZO2w93vrQtL0yUvzZZy_Jhc1dt7c_N0xeXucr2dP6ep5sZxNV2kJIGlaljXKrBJQguAouMlRAM8x2wBHXgiT5wUIpBUDLnEjaiNNhOWyQoRMSBiT5am3stjqvWt26I7aYqN_H9Z9aHSRvzOaGiWyilHO6jiCTCmTR4aqEpuCZVHNmNyduvbOfh6MD7q1BxcFeM1U1KIky1RMTU6p0lnvnan_VxnVg289-NaDbz34hh8A1HGv</recordid><startdate>20130901</startdate><enddate>20130901</enddate><creator>Genuchten, Martinus Th. van</creator><creator>Leij, Feike J.</creator><creator>Skaggs, Todd H.</creator><creator>Toride, Nobuo</creator><creator>Bradford, Scott A.</creator><creator>Pontedeiro, Elizabeth M.</creator><general>De Gruyter Poland</general><general>Sciendo</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>S0W</scope><scope>DOA</scope></search><sort><creationdate>20130901</creationdate><title>Exact Analytical Solutions for Contaminant Transport in Rivers</title><author>Genuchten, Martinus Th. van ; Leij, Feike J. ; Skaggs, Todd H. ; Toride, Nobuo ; Bradford, Scott A. ; Pontedeiro, Elizabeth M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3370-ccfa75d43c342a42e6a4326a5b32a294e66934a0d1327ab4fe7e79027daa35473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>analytical solutions</topic><topic>contaminant transport</topic><topic>Creeks &amp; streams</topic><topic>Equilibrium</topic><topic>Partial differential equations</topic><topic>Rivers</topic><topic>Sediments</topic><topic>solute decay chains</topic><topic>Surface water</topic><topic>transient storage models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Genuchten, Martinus Th. van</creatorcontrib><creatorcontrib>Leij, Feike J.</creatorcontrib><creatorcontrib>Skaggs, Todd H.</creatorcontrib><creatorcontrib>Toride, Nobuo</creatorcontrib><creatorcontrib>Bradford, Scott A.</creatorcontrib><creatorcontrib>Pontedeiro, Elizabeth M.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Journal of Hydrology and Hydromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Genuchten, Martinus Th. van</au><au>Leij, Feike J.</au><au>Skaggs, Todd H.</au><au>Toride, Nobuo</au><au>Bradford, Scott A.</au><au>Pontedeiro, Elizabeth M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Analytical Solutions for Contaminant Transport in Rivers</atitle><jtitle>Journal of Hydrology and Hydromechanics</jtitle><date>2013-09-01</date><risdate>2013</risdate><volume>61</volume><issue>3</issue><spage>250</spage><epage>259</epage><pages>250-259</pages><issn>0042-790X</issn><eissn>1338-4333</eissn><abstract>Contaminant transport processes in streams, rivers, and other surface water bodies can be analyzed or predicted using the advection-dispersion equation and related transport models. In part 1 of this two-part series we presented a large number of one- and multi-dimensional analytical solutions of the standard equilibrium advection-dispersion equation (ADE) with and without terms accounting for zero-order production and first-order decay. The solutions are extended in the current part 2 to advective-dispersive transport with simultaneous first-order mass exchange between the stream or river and zones with dead water (transient storage models), and to problems involving longitudinal advectivedispersive transport with simultaneous diffusion in fluvial sediments or near-stream subsurface regions comprising a hyporheic zone. Part 2 also provides solutions for one-dimensional advective-dispersive transport of contaminants subject to consecutive decay chain reactions.</abstract><cop>Bratislava</cop><pub>De Gruyter Poland</pub><doi>10.2478/johh-2013-0032</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0042-790X
ispartof Journal of Hydrology and Hydromechanics, 2013-09, Vol.61 (3), p.250-259
issn 0042-790X
1338-4333
language eng
recordid cdi_proquest_journals_1865287158
source De Gruyter Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects analytical solutions
contaminant transport
Creeks & streams
Equilibrium
Partial differential equations
Rivers
Sediments
solute decay chains
Surface water
transient storage models
title Exact Analytical Solutions for Contaminant Transport in Rivers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T03%3A34%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Analytical%20Solutions%20for%20Contaminant%20Transport%20in%20Rivers&rft.jtitle=Journal%20of%20Hydrology%20and%20Hydromechanics&rft.au=Genuchten,%20Martinus%20Th.%20van&rft.date=2013-09-01&rft.volume=61&rft.issue=3&rft.spage=250&rft.epage=259&rft.pages=250-259&rft.issn=0042-790X&rft.eissn=1338-4333&rft_id=info:doi/10.2478/johh-2013-0032&rft_dat=%3Cproquest_doaj_%3E4312425441%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865287158&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_0e845d1021fa43a188e6370dd4b91500&rfr_iscdi=true