Boltzmann Equation In The Modeling Of Mineral Processing

The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling of multi-dimensional processes. This equation defines the evolution of the distribution of the probability density in a given phase space. In the case of a grinding process, the considered phase space is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of mining sciences = Archiwum górnictwa 2015-06, Vol.60 (2), p.507-516
Hauptverfasser: Zhukov, Vladimir Pavlovich, Otwinowski, Henryk, Belyakov, Anton Nikolaevich, Wyleciał, Tomasz, Mizonov, Vadim Evgenevich
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516
container_issue 2
container_start_page 507
container_title Archives of mining sciences = Archiwum górnictwa
container_volume 60
creator Zhukov, Vladimir Pavlovich
Otwinowski, Henryk
Belyakov, Anton Nikolaevich
Wyleciał, Tomasz
Mizonov, Vadim Evgenevich
description The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling of multi-dimensional processes. This equation defines the evolution of the distribution of the probability density in a given phase space. In the case of a grinding process, the considered phase space is defined by the Cartesian coordinates of particle position, the components of particle velocity and the particle size. The theory of Markov processes is used in the paper to solve the Boltzmann equation for the multi-dimensional space of system states. In order to verify the presented model, research into the simultaneous comminution and movement of material in a drum ball mill was performed. The methodology developed to solve the Boltzmann equation significantly reduces the computational time, which is particularly important in the solution of multi-dimensional problems.
doi_str_mv 10.1515/amsc-2015-0033
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1865223080</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312239901</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-9744dc6bfe050ee718d5c605f5b6c8d59a56b49438f21767c9355498fe65b9383</originalsourceid><addsrcrecordid>eNptkM1LwzAYxoMoOOaungueO980TZqAFx1TBxvzMM8hTZPZ0aVb0iLzrzdlHnbw9D68PB_wQ-gewxRTTB_VPug0A0xTAEKu0AgzLlLImbi-0LdoEsIOIPoyQRgdIf7SNt3PXjmXzI-96urWJQuXbL5Msmor09Rum6xtsqqd8apJPnyrTQjxe4durGqCmfzdMfp8nW9m7-ly_baYPS9TTRh0qSjyvNKstAYoGFNgXlHNgFpaMh21UJSVucgJtxkuWKEFoTQX3BpGS0E4GaOHc-_Bt8fehE7u2t67OCkxZzTLCHCIrunZpX0bgjdWHny9V_4kMcgBkBwAyQGQHADFwNM58K2azvjKbH1_iuKi_d8gg4xCQX4B2MFqng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865223080</pqid></control><display><type>article</type><title>Boltzmann Equation In The Modeling Of Mineral Processing</title><source>Alma/SFX Local Collection</source><creator>Zhukov, Vladimir Pavlovich ; Otwinowski, Henryk ; Belyakov, Anton Nikolaevich ; Wyleciał, Tomasz ; Mizonov, Vadim Evgenevich</creator><creatorcontrib>Zhukov, Vladimir Pavlovich ; Otwinowski, Henryk ; Belyakov, Anton Nikolaevich ; Wyleciał, Tomasz ; Mizonov, Vadim Evgenevich</creatorcontrib><description>The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling of multi-dimensional processes. This equation defines the evolution of the distribution of the probability density in a given phase space. In the case of a grinding process, the considered phase space is defined by the Cartesian coordinates of particle position, the components of particle velocity and the particle size. The theory of Markov processes is used in the paper to solve the Boltzmann equation for the multi-dimensional space of system states. In order to verify the presented model, research into the simultaneous comminution and movement of material in a drum ball mill was performed. The methodology developed to solve the Boltzmann equation significantly reduces the computational time, which is particularly important in the solution of multi-dimensional problems.</description><identifier>ISSN: 1689-0469</identifier><identifier>ISSN: 0860-7001</identifier><identifier>EISSN: 1689-0469</identifier><identifier>DOI: 10.1515/amsc-2015-0033</identifier><language>eng</language><publisher>Warsaw: De Gruyter Open</publisher><subject>ball mill ; Boltzmann equation ; classification ; comminution ; klasyfikacja ; matrix model ; mineral processing ; model macierzowy ; młyn kulowy ; particles transport ; procesy przeróbcze ; rozdrabnianie ; równanie Boltzmanna ; transport ziaren</subject><ispartof>Archives of mining sciences = Archiwum górnictwa, 2015-06, Vol.60 (2), p.507-516</ispartof><rights>Copyright De Gruyter Open Sp. z o.o. 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-9744dc6bfe050ee718d5c605f5b6c8d59a56b49438f21767c9355498fe65b9383</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhukov, Vladimir Pavlovich</creatorcontrib><creatorcontrib>Otwinowski, Henryk</creatorcontrib><creatorcontrib>Belyakov, Anton Nikolaevich</creatorcontrib><creatorcontrib>Wyleciał, Tomasz</creatorcontrib><creatorcontrib>Mizonov, Vadim Evgenevich</creatorcontrib><title>Boltzmann Equation In The Modeling Of Mineral Processing</title><title>Archives of mining sciences = Archiwum górnictwa</title><description>The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling of multi-dimensional processes. This equation defines the evolution of the distribution of the probability density in a given phase space. In the case of a grinding process, the considered phase space is defined by the Cartesian coordinates of particle position, the components of particle velocity and the particle size. The theory of Markov processes is used in the paper to solve the Boltzmann equation for the multi-dimensional space of system states. In order to verify the presented model, research into the simultaneous comminution and movement of material in a drum ball mill was performed. The methodology developed to solve the Boltzmann equation significantly reduces the computational time, which is particularly important in the solution of multi-dimensional problems.</description><subject>ball mill</subject><subject>Boltzmann equation</subject><subject>classification</subject><subject>comminution</subject><subject>klasyfikacja</subject><subject>matrix model</subject><subject>mineral processing</subject><subject>model macierzowy</subject><subject>młyn kulowy</subject><subject>particles transport</subject><subject>procesy przeróbcze</subject><subject>rozdrabnianie</subject><subject>równanie Boltzmanna</subject><subject>transport ziaren</subject><issn>1689-0469</issn><issn>0860-7001</issn><issn>1689-0469</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkM1LwzAYxoMoOOaungueO980TZqAFx1TBxvzMM8hTZPZ0aVb0iLzrzdlHnbw9D68PB_wQ-gewxRTTB_VPug0A0xTAEKu0AgzLlLImbi-0LdoEsIOIPoyQRgdIf7SNt3PXjmXzI-96urWJQuXbL5Msmor09Rum6xtsqqd8apJPnyrTQjxe4durGqCmfzdMfp8nW9m7-ly_baYPS9TTRh0qSjyvNKstAYoGFNgXlHNgFpaMh21UJSVucgJtxkuWKEFoTQX3BpGS0E4GaOHc-_Bt8fehE7u2t67OCkxZzTLCHCIrunZpX0bgjdWHny9V_4kMcgBkBwAyQGQHADFwNM58K2azvjKbH1_iuKi_d8gg4xCQX4B2MFqng</recordid><startdate>20150601</startdate><enddate>20150601</enddate><creator>Zhukov, Vladimir Pavlovich</creator><creator>Otwinowski, Henryk</creator><creator>Belyakov, Anton Nikolaevich</creator><creator>Wyleciał, Tomasz</creator><creator>Mizonov, Vadim Evgenevich</creator><general>De Gruyter Open</general><general>Polish Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TN</scope><scope>7UA</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L.G</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope></search><sort><creationdate>20150601</creationdate><title>Boltzmann Equation In The Modeling Of Mineral Processing</title><author>Zhukov, Vladimir Pavlovich ; Otwinowski, Henryk ; Belyakov, Anton Nikolaevich ; Wyleciał, Tomasz ; Mizonov, Vadim Evgenevich</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-9744dc6bfe050ee718d5c605f5b6c8d59a56b49438f21767c9355498fe65b9383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>ball mill</topic><topic>Boltzmann equation</topic><topic>classification</topic><topic>comminution</topic><topic>klasyfikacja</topic><topic>matrix model</topic><topic>mineral processing</topic><topic>model macierzowy</topic><topic>młyn kulowy</topic><topic>particles transport</topic><topic>procesy przeróbcze</topic><topic>rozdrabnianie</topic><topic>równanie Boltzmanna</topic><topic>transport ziaren</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhukov, Vladimir Pavlovich</creatorcontrib><creatorcontrib>Otwinowski, Henryk</creatorcontrib><creatorcontrib>Belyakov, Anton Nikolaevich</creatorcontrib><creatorcontrib>Wyleciał, Tomasz</creatorcontrib><creatorcontrib>Mizonov, Vadim Evgenevich</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>Archives of mining sciences = Archiwum górnictwa</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhukov, Vladimir Pavlovich</au><au>Otwinowski, Henryk</au><au>Belyakov, Anton Nikolaevich</au><au>Wyleciał, Tomasz</au><au>Mizonov, Vadim Evgenevich</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boltzmann Equation In The Modeling Of Mineral Processing</atitle><jtitle>Archives of mining sciences = Archiwum górnictwa</jtitle><date>2015-06-01</date><risdate>2015</risdate><volume>60</volume><issue>2</issue><spage>507</spage><epage>516</epage><pages>507-516</pages><issn>1689-0469</issn><issn>0860-7001</issn><eissn>1689-0469</eissn><abstract>The paper presents an application of the Boltzmann kinetic equation to the simultaneous modeling of multi-dimensional processes. This equation defines the evolution of the distribution of the probability density in a given phase space. In the case of a grinding process, the considered phase space is defined by the Cartesian coordinates of particle position, the components of particle velocity and the particle size. The theory of Markov processes is used in the paper to solve the Boltzmann equation for the multi-dimensional space of system states. In order to verify the presented model, research into the simultaneous comminution and movement of material in a drum ball mill was performed. The methodology developed to solve the Boltzmann equation significantly reduces the computational time, which is particularly important in the solution of multi-dimensional problems.</abstract><cop>Warsaw</cop><pub>De Gruyter Open</pub><doi>10.1515/amsc-2015-0033</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1689-0469
ispartof Archives of mining sciences = Archiwum górnictwa, 2015-06, Vol.60 (2), p.507-516
issn 1689-0469
0860-7001
1689-0469
language eng
recordid cdi_proquest_journals_1865223080
source Alma/SFX Local Collection
subjects ball mill
Boltzmann equation
classification
comminution
klasyfikacja
matrix model
mineral processing
model macierzowy
młyn kulowy
particles transport
procesy przeróbcze
rozdrabnianie
równanie Boltzmanna
transport ziaren
title Boltzmann Equation In The Modeling Of Mineral Processing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A22%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boltzmann%20Equation%20In%20The%20Modeling%20Of%20Mineral%20Processing&rft.jtitle=Archives%20of%20mining%20sciences%20=%20Archiwum%20g%C3%B3rnictwa&rft.au=Zhukov,%20Vladimir%20Pavlovich&rft.date=2015-06-01&rft.volume=60&rft.issue=2&rft.spage=507&rft.epage=516&rft.pages=507-516&rft.issn=1689-0469&rft.eissn=1689-0469&rft_id=info:doi/10.1515/amsc-2015-0033&rft_dat=%3Cproquest_cross%3E4312239901%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865223080&rft_id=info:pmid/&rfr_iscdi=true