A Kernel Function for Redundant Features from RDF Graphs and Its Fast Calculation

Machine learning on RDF data has become important in the field of the Semantic Web. However, RDF graph structures are redundantly represented by noisy and incomplete data on theWeb. In order to apply SVMs to such RDF data, we propose a kernel function to compute the similarity between resources on R...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transactions of the Japanese Society for Artificial Intelligence 2017/01/06, Vol.32(1), pp.B-G34_1-12
Hauptverfasser: Arai, Daichi, Kaneiwa, Ken
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page B-G34_1
container_title Transactions of the Japanese Society for Artificial Intelligence
container_volume 32
creator Arai, Daichi
Kaneiwa, Ken
description Machine learning on RDF data has become important in the field of the Semantic Web. However, RDF graph structures are redundantly represented by noisy and incomplete data on theWeb. In order to apply SVMs to such RDF data, we propose a kernel function to compute the similarity between resources on RDF graphs. This kernel function is defined by selected features on RDF paths that eliminate the redundancy on RDF graphs with information gain ratio filtering. Kernel functions are a very flexible framework and cannot be applied to only SVMs but also principal component analysis, canonical correlation analysis, clustering and so on. However, the calculation of the proposed kernel function requires high costs for time and memory due to the exponential increase of features in RDF graphs. Therefore, we propose an efficient algorithm that calculates the kernel for redundant features from RDF graphs. Our experiments show the performance of the proposed kernel with SVMs on classification tasks for RDF resources and the advantages over existing kernels.
doi_str_mv 10.1527/tjsai.B-G34
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1865145885</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1865145885</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2014-4b4f6aca8cb3d0a6f457e710477914fbb2cca16c973bd4d83a8e82d9547fc9d33</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EElXpih-wxBIF7NiJk2VbSKmohKhgbU38oKlSp9jOgr8nfaibmZHm3BnpIHRPyRPNUvEctwGap1myYPwKjSjjeVIQRq7PMxGU36JJCE1NCE0ZpyQboc8pfjfemRZXvVOx6Ry2ncdro3unwUVcGYi9NwFb3-3w-qXCCw_7TcDgNF7GgCsIEc-hVX0Lh_wdurHQBjM59zH6rl6_5m_J6mOxnE9XiUoJ5Qmvuc1BQaFqpgnklmfCCEq4ECXltq5TpYDmqhSs1lwXDApTpLrMuLCq1IyN0cPp7t53v70JUW673rvhpaRFnlGeFUU2UI8nSvkuBG-s3PtmB_5PUiIP2uRRm5zJQdtAT0_0NkT4MRcWfGxUa84sSyU9lGPmslMb8NI49g9w23f8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865145885</pqid></control><display><type>article</type><title>A Kernel Function for Redundant Features from RDF Graphs and Its Fast Calculation</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Arai, Daichi ; Kaneiwa, Ken</creator><creatorcontrib>Arai, Daichi ; Kaneiwa, Ken</creatorcontrib><description>Machine learning on RDF data has become important in the field of the Semantic Web. However, RDF graph structures are redundantly represented by noisy and incomplete data on theWeb. In order to apply SVMs to such RDF data, we propose a kernel function to compute the similarity between resources on RDF graphs. This kernel function is defined by selected features on RDF paths that eliminate the redundancy on RDF graphs with information gain ratio filtering. Kernel functions are a very flexible framework and cannot be applied to only SVMs but also principal component analysis, canonical correlation analysis, clustering and so on. However, the calculation of the proposed kernel function requires high costs for time and memory due to the exponential increase of features in RDF graphs. Therefore, we propose an efficient algorithm that calculates the kernel for redundant features from RDF graphs. Our experiments show the performance of the proposed kernel with SVMs on classification tasks for RDF resources and the advantages over existing kernels.</description><identifier>ISSN: 1346-0714</identifier><identifier>EISSN: 1346-8030</identifier><identifier>DOI: 10.1527/tjsai.B-G34</identifier><language>eng</language><publisher>Tokyo: The Japanese Society for Artificial Intelligence</publisher><subject>Algorithms ; Clustering ; Correlation analysis ; Graphical representations ; Graphs ; information gain ratio ; kernel ; Kernel functions ; Machine learning ; Mathematical analysis ; Principal components analysis ; RDF ; Redundancy ; SVM</subject><ispartof>Transactions of the Japanese Society for Artificial Intelligence, 2017/01/06, Vol.32(1), pp.B-G34_1-12</ispartof><rights>The Japanese Society for Artificial Intelligence 2016</rights><rights>Copyright Japan Science and Technology Agency 2017</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2014-4b4f6aca8cb3d0a6f457e710477914fbb2cca16c973bd4d83a8e82d9547fc9d33</citedby><cites>FETCH-LOGICAL-c2014-4b4f6aca8cb3d0a6f457e710477914fbb2cca16c973bd4d83a8e82d9547fc9d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1883,27924,27925</link.rule.ids></links><search><creatorcontrib>Arai, Daichi</creatorcontrib><creatorcontrib>Kaneiwa, Ken</creatorcontrib><title>A Kernel Function for Redundant Features from RDF Graphs and Its Fast Calculation</title><title>Transactions of the Japanese Society for Artificial Intelligence</title><description>Machine learning on RDF data has become important in the field of the Semantic Web. However, RDF graph structures are redundantly represented by noisy and incomplete data on theWeb. In order to apply SVMs to such RDF data, we propose a kernel function to compute the similarity between resources on RDF graphs. This kernel function is defined by selected features on RDF paths that eliminate the redundancy on RDF graphs with information gain ratio filtering. Kernel functions are a very flexible framework and cannot be applied to only SVMs but also principal component analysis, canonical correlation analysis, clustering and so on. However, the calculation of the proposed kernel function requires high costs for time and memory due to the exponential increase of features in RDF graphs. Therefore, we propose an efficient algorithm that calculates the kernel for redundant features from RDF graphs. Our experiments show the performance of the proposed kernel with SVMs on classification tasks for RDF resources and the advantages over existing kernels.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Correlation analysis</subject><subject>Graphical representations</subject><subject>Graphs</subject><subject>information gain ratio</subject><subject>kernel</subject><subject>Kernel functions</subject><subject>Machine learning</subject><subject>Mathematical analysis</subject><subject>Principal components analysis</subject><subject>RDF</subject><subject>Redundancy</subject><subject>SVM</subject><issn>1346-0714</issn><issn>1346-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtOwzAQRS0EElXpih-wxBIF7NiJk2VbSKmohKhgbU38oKlSp9jOgr8nfaibmZHm3BnpIHRPyRPNUvEctwGap1myYPwKjSjjeVIQRq7PMxGU36JJCE1NCE0ZpyQboc8pfjfemRZXvVOx6Ry2ncdro3unwUVcGYi9NwFb3-3w-qXCCw_7TcDgNF7GgCsIEc-hVX0Lh_wdurHQBjM59zH6rl6_5m_J6mOxnE9XiUoJ5Qmvuc1BQaFqpgnklmfCCEq4ECXltq5TpYDmqhSs1lwXDApTpLrMuLCq1IyN0cPp7t53v70JUW673rvhpaRFnlGeFUU2UI8nSvkuBG-s3PtmB_5PUiIP2uRRm5zJQdtAT0_0NkT4MRcWfGxUa84sSyU9lGPmslMb8NI49g9w23f8</recordid><startdate>20170106</startdate><enddate>20170106</enddate><creator>Arai, Daichi</creator><creator>Kaneiwa, Ken</creator><general>The Japanese Society for Artificial Intelligence</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170106</creationdate><title>A Kernel Function for Redundant Features from RDF Graphs and Its Fast Calculation</title><author>Arai, Daichi ; Kaneiwa, Ken</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2014-4b4f6aca8cb3d0a6f457e710477914fbb2cca16c973bd4d83a8e82d9547fc9d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Correlation analysis</topic><topic>Graphical representations</topic><topic>Graphs</topic><topic>information gain ratio</topic><topic>kernel</topic><topic>Kernel functions</topic><topic>Machine learning</topic><topic>Mathematical analysis</topic><topic>Principal components analysis</topic><topic>RDF</topic><topic>Redundancy</topic><topic>SVM</topic><toplevel>online_resources</toplevel><creatorcontrib>Arai, Daichi</creatorcontrib><creatorcontrib>Kaneiwa, Ken</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arai, Daichi</au><au>Kaneiwa, Ken</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Kernel Function for Redundant Features from RDF Graphs and Its Fast Calculation</atitle><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle><date>2017-01-06</date><risdate>2017</risdate><volume>32</volume><issue>1</issue><spage>B-G34_1</spage><epage>12</epage><pages>B-G34_1-12</pages><issn>1346-0714</issn><eissn>1346-8030</eissn><abstract>Machine learning on RDF data has become important in the field of the Semantic Web. However, RDF graph structures are redundantly represented by noisy and incomplete data on theWeb. In order to apply SVMs to such RDF data, we propose a kernel function to compute the similarity between resources on RDF graphs. This kernel function is defined by selected features on RDF paths that eliminate the redundancy on RDF graphs with information gain ratio filtering. Kernel functions are a very flexible framework and cannot be applied to only SVMs but also principal component analysis, canonical correlation analysis, clustering and so on. However, the calculation of the proposed kernel function requires high costs for time and memory due to the exponential increase of features in RDF graphs. Therefore, we propose an efficient algorithm that calculates the kernel for redundant features from RDF graphs. Our experiments show the performance of the proposed kernel with SVMs on classification tasks for RDF resources and the advantages over existing kernels.</abstract><cop>Tokyo</cop><pub>The Japanese Society for Artificial Intelligence</pub><doi>10.1527/tjsai.B-G34</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1346-0714
ispartof Transactions of the Japanese Society for Artificial Intelligence, 2017/01/06, Vol.32(1), pp.B-G34_1-12
issn 1346-0714
1346-8030
language eng
recordid cdi_proquest_journals_1865145885
source J-STAGE Free; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Clustering
Correlation analysis
Graphical representations
Graphs
information gain ratio
kernel
Kernel functions
Machine learning
Mathematical analysis
Principal components analysis
RDF
Redundancy
SVM
title A Kernel Function for Redundant Features from RDF Graphs and Its Fast Calculation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A48%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Kernel%20Function%20for%20Redundant%20Features%20from%20RDF%20Graphs%20and%20Its%20Fast%20Calculation&rft.jtitle=Transactions%20of%20the%20Japanese%20Society%20for%20Artificial%20Intelligence&rft.au=Arai,%20Daichi&rft.date=2017-01-06&rft.volume=32&rft.issue=1&rft.spage=B-G34_1&rft.epage=12&rft.pages=B-G34_1-12&rft.issn=1346-0714&rft.eissn=1346-8030&rft_id=info:doi/10.1527/tjsai.B-G34&rft_dat=%3Cproquest_cross%3E1865145885%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865145885&rft_id=info:pmid/&rfr_iscdi=true