Write-Induced Head Contamination in Heat-Assisted Magnetic Recording

One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on magnetics 2017-02, Vol.53 (2), p.1-7
Hauptverfasser: Kiely, James D., Jones, Paul M., Yang Yang, Brand, John L., Anaya-Dufresne, Manuel, Fletcher, Patrick C., Zavaliche, Florin, Toivola, Yvete, Duda, John C., Johnson, Michael T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue 2
container_start_page 1
container_title IEEE transactions on magnetics
container_volume 53
creator Kiely, James D.
Jones, Paul M.
Yang Yang
Brand, John L.
Anaya-Dufresne, Manuel
Fletcher, Patrick C.
Zavaliche, Florin
Toivola, Yvete
Duda, John C.
Johnson, Michael T.
description One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation model with shear forces suggests a flow of lubricant on the head may precipitate contamination. The contamination is observed to grow in the head-media gap until it contacts the media surface, at which point an additional material pickup mechanism can be activated. Evidence of contact-induced transfer and a chemical reaction of the contamination is presented, and the impacts of contamination on head temperatures and thermal gradient is presented. Depending on the contamination properties, head temperatures may be increased substantially, leading to increased reliability risk. Consistent with previous analyses, we find that contamination may increase media thermal gradient.
doi_str_mv 10.1109/TMAG.2016.2618842
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1862197036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7736109</ieee_id><sourcerecordid>1862197036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-d39bcefe98c311ded88bb891d74ba7a5ed2bd01331b72fee31b485d91a9694cf3</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWKsPIF4KnrdmNtlscixVa6FFkIrHkE1mS4rN1iQ9-Pbu0uLpZ4bvn4GPkHugUwCqnjbr2WJaUhDTUoCUvLwgI1AcCkqFuiQjSkEWigt-TW5S2vUjr4COyPNX9BmLZXBHi27yhsZN5l3IZu-Dyb4LEx-GbS5mKfmUe2ZttgGzt5MPtF10PmxvyVVrvhPenXNMPl9fNvO3YvW-WM5nq8KySuXCMdVYbFFJywAcOimbRipwNW9MbSp0ZeMoMAZNXbaIfXJZOQVGCcVty8bk8XT3ELufI6asd90xhv6lBilKUDVloqfgRNnYpRSx1Yfo9yb-aqB6kKUHWXqQpc-y-s7DqeMR8Z-vayZ6nv0BeR5lcw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1862197036</pqid></control><display><type>article</type><title>Write-Induced Head Contamination in Heat-Assisted Magnetic Recording</title><source>IEEE Electronic Library (IEL)</source><creator>Kiely, James D. ; Jones, Paul M. ; Yang Yang ; Brand, John L. ; Anaya-Dufresne, Manuel ; Fletcher, Patrick C. ; Zavaliche, Florin ; Toivola, Yvete ; Duda, John C. ; Johnson, Michael T.</creator><creatorcontrib>Kiely, James D. ; Jones, Paul M. ; Yang Yang ; Brand, John L. ; Anaya-Dufresne, Manuel ; Fletcher, Patrick C. ; Zavaliche, Florin ; Toivola, Yvete ; Duda, John C. ; Johnson, Michael T.</creatorcontrib><description>One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation model with shear forces suggests a flow of lubricant on the head may precipitate contamination. The contamination is observed to grow in the head-media gap until it contacts the media surface, at which point an additional material pickup mechanism can be activated. Evidence of contact-induced transfer and a chemical reaction of the contamination is presented, and the impacts of contamination on head temperatures and thermal gradient is presented. Depending on the contamination properties, head temperatures may be increased substantially, leading to increased reliability risk. Consistent with previous analyses, we find that contamination may increase media thermal gradient.</description><identifier>ISSN: 0018-9464</identifier><identifier>EISSN: 1941-0069</identifier><identifier>DOI: 10.1109/TMAG.2016.2618842</identifier><identifier>CODEN: IEMGAQ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Chemical reactions ; Condensates ; Contamination ; Evaporation rate ; hard disk drive ; Head ; head–disk interface ; Heat-assisted magnetic recording ; heat-assisted magnetic recording (HAMR) ; lubricant ; Lubricants ; Magnetic heads ; Magnetic recording ; Magnetism ; Media ; Reliability analysis ; Shear forces ; Surface contamination ; Temperature gradients</subject><ispartof>IEEE transactions on magnetics, 2017-02, Vol.53 (2), p.1-7</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-d39bcefe98c311ded88bb891d74ba7a5ed2bd01331b72fee31b485d91a9694cf3</citedby><cites>FETCH-LOGICAL-c359t-d39bcefe98c311ded88bb891d74ba7a5ed2bd01331b72fee31b485d91a9694cf3</cites><orcidid>0000-0003-1986-1858</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7736109$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>315,781,785,797,27929,27930,54763</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7736109$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kiely, James D.</creatorcontrib><creatorcontrib>Jones, Paul M.</creatorcontrib><creatorcontrib>Yang Yang</creatorcontrib><creatorcontrib>Brand, John L.</creatorcontrib><creatorcontrib>Anaya-Dufresne, Manuel</creatorcontrib><creatorcontrib>Fletcher, Patrick C.</creatorcontrib><creatorcontrib>Zavaliche, Florin</creatorcontrib><creatorcontrib>Toivola, Yvete</creatorcontrib><creatorcontrib>Duda, John C.</creatorcontrib><creatorcontrib>Johnson, Michael T.</creatorcontrib><title>Write-Induced Head Contamination in Heat-Assisted Magnetic Recording</title><title>IEEE transactions on magnetics</title><addtitle>TMAG</addtitle><description>One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation model with shear forces suggests a flow of lubricant on the head may precipitate contamination. The contamination is observed to grow in the head-media gap until it contacts the media surface, at which point an additional material pickup mechanism can be activated. Evidence of contact-induced transfer and a chemical reaction of the contamination is presented, and the impacts of contamination on head temperatures and thermal gradient is presented. Depending on the contamination properties, head temperatures may be increased substantially, leading to increased reliability risk. Consistent with previous analyses, we find that contamination may increase media thermal gradient.</description><subject>Chemical reactions</subject><subject>Condensates</subject><subject>Contamination</subject><subject>Evaporation rate</subject><subject>hard disk drive</subject><subject>Head</subject><subject>head–disk interface</subject><subject>Heat-assisted magnetic recording</subject><subject>heat-assisted magnetic recording (HAMR)</subject><subject>lubricant</subject><subject>Lubricants</subject><subject>Magnetic heads</subject><subject>Magnetic recording</subject><subject>Magnetism</subject><subject>Media</subject><subject>Reliability analysis</subject><subject>Shear forces</subject><subject>Surface contamination</subject><subject>Temperature gradients</subject><issn>0018-9464</issn><issn>1941-0069</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWKsPIF4KnrdmNtlscixVa6FFkIrHkE1mS4rN1iQ9-Pbu0uLpZ4bvn4GPkHugUwCqnjbr2WJaUhDTUoCUvLwgI1AcCkqFuiQjSkEWigt-TW5S2vUjr4COyPNX9BmLZXBHi27yhsZN5l3IZu-Dyb4LEx-GbS5mKfmUe2ZttgGzt5MPtF10PmxvyVVrvhPenXNMPl9fNvO3YvW-WM5nq8KySuXCMdVYbFFJywAcOimbRipwNW9MbSp0ZeMoMAZNXbaIfXJZOQVGCcVty8bk8XT3ELufI6asd90xhv6lBilKUDVloqfgRNnYpRSx1Yfo9yb-aqB6kKUHWXqQpc-y-s7DqeMR8Z-vayZ6nv0BeR5lcw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Kiely, James D.</creator><creator>Jones, Paul M.</creator><creator>Yang Yang</creator><creator>Brand, John L.</creator><creator>Anaya-Dufresne, Manuel</creator><creator>Fletcher, Patrick C.</creator><creator>Zavaliche, Florin</creator><creator>Toivola, Yvete</creator><creator>Duda, John C.</creator><creator>Johnson, Michael T.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1986-1858</orcidid></search><sort><creationdate>20170201</creationdate><title>Write-Induced Head Contamination in Heat-Assisted Magnetic Recording</title><author>Kiely, James D. ; Jones, Paul M. ; Yang Yang ; Brand, John L. ; Anaya-Dufresne, Manuel ; Fletcher, Patrick C. ; Zavaliche, Florin ; Toivola, Yvete ; Duda, John C. ; Johnson, Michael T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-d39bcefe98c311ded88bb891d74ba7a5ed2bd01331b72fee31b485d91a9694cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical reactions</topic><topic>Condensates</topic><topic>Contamination</topic><topic>Evaporation rate</topic><topic>hard disk drive</topic><topic>Head</topic><topic>head–disk interface</topic><topic>Heat-assisted magnetic recording</topic><topic>heat-assisted magnetic recording (HAMR)</topic><topic>lubricant</topic><topic>Lubricants</topic><topic>Magnetic heads</topic><topic>Magnetic recording</topic><topic>Magnetism</topic><topic>Media</topic><topic>Reliability analysis</topic><topic>Shear forces</topic><topic>Surface contamination</topic><topic>Temperature gradients</topic><toplevel>online_resources</toplevel><creatorcontrib>Kiely, James D.</creatorcontrib><creatorcontrib>Jones, Paul M.</creatorcontrib><creatorcontrib>Yang Yang</creatorcontrib><creatorcontrib>Brand, John L.</creatorcontrib><creatorcontrib>Anaya-Dufresne, Manuel</creatorcontrib><creatorcontrib>Fletcher, Patrick C.</creatorcontrib><creatorcontrib>Zavaliche, Florin</creatorcontrib><creatorcontrib>Toivola, Yvete</creatorcontrib><creatorcontrib>Duda, John C.</creatorcontrib><creatorcontrib>Johnson, Michael T.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on magnetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kiely, James D.</au><au>Jones, Paul M.</au><au>Yang Yang</au><au>Brand, John L.</au><au>Anaya-Dufresne, Manuel</au><au>Fletcher, Patrick C.</au><au>Zavaliche, Florin</au><au>Toivola, Yvete</au><au>Duda, John C.</au><au>Johnson, Michael T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Write-Induced Head Contamination in Heat-Assisted Magnetic Recording</atitle><jtitle>IEEE transactions on magnetics</jtitle><stitle>TMAG</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>53</volume><issue>2</issue><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>0018-9464</issn><eissn>1941-0069</eissn><coden>IEMGAQ</coden><abstract>One detrimental by-product of heat-assisted magnetic recording writing is the creation of head contamination. Here, we present the current understanding of the driving forces, growth mechanisms, and growth rates of write-induced head contamination. The combination of an evaporation and condensation model with shear forces suggests a flow of lubricant on the head may precipitate contamination. The contamination is observed to grow in the head-media gap until it contacts the media surface, at which point an additional material pickup mechanism can be activated. Evidence of contact-induced transfer and a chemical reaction of the contamination is presented, and the impacts of contamination on head temperatures and thermal gradient is presented. Depending on the contamination properties, head temperatures may be increased substantially, leading to increased reliability risk. Consistent with previous analyses, we find that contamination may increase media thermal gradient.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TMAG.2016.2618842</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-1986-1858</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9464
ispartof IEEE transactions on magnetics, 2017-02, Vol.53 (2), p.1-7
issn 0018-9464
1941-0069
language eng
recordid cdi_proquest_journals_1862197036
source IEEE Electronic Library (IEL)
subjects Chemical reactions
Condensates
Contamination
Evaporation rate
hard disk drive
Head
head–disk interface
Heat-assisted magnetic recording
heat-assisted magnetic recording (HAMR)
lubricant
Lubricants
Magnetic heads
Magnetic recording
Magnetism
Media
Reliability analysis
Shear forces
Surface contamination
Temperature gradients
title Write-Induced Head Contamination in Heat-Assisted Magnetic Recording
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T09%3A38%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Write-Induced%20Head%20Contamination%20in%20Heat-Assisted%20Magnetic%20Recording&rft.jtitle=IEEE%20transactions%20on%20magnetics&rft.au=Kiely,%20James%20D.&rft.date=2017-02-01&rft.volume=53&rft.issue=2&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=0018-9464&rft.eissn=1941-0069&rft.coden=IEMGAQ&rft_id=info:doi/10.1109/TMAG.2016.2618842&rft_dat=%3Cproquest_RIE%3E1862197036%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1862197036&rft_id=info:pmid/&rft_ieee_id=7736109&rfr_iscdi=true