An Improved Three-Layer Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks
Topology control in wireless sensor networks (WSNs) balances the communication load on sensor devices and increases the network lifetime and scalability. Hierarchical or cluster-based design is one of the approaches to conserve the energy of the sensor networks in which the nodes with the higher res...
Gespeichert in:
Veröffentlicht in: | IEEE internet of things journal 2016-12, Vol.3 (6), p.951-958 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 958 |
---|---|
container_issue | 6 |
container_start_page | 951 |
container_title | IEEE internet of things journal |
container_volume | 3 |
creator | Lee, Jin-Shyan Kao, Tsung-Yi |
description | Topology control in wireless sensor networks (WSNs) balances the communication load on sensor devices and increases the network lifetime and scalability. Hierarchical or cluster-based design is one of the approaches to conserve the energy of the sensor networks in which the nodes with the higher residual energy could be used to gather data and route the information. However, most of the previous work on clustering has adopted a two-layer hierarchy, and only few methods studied a three-layer scheme instead. Based on a three-layer hierarchy, this paper has proposed a semi-distributed clustering approach by considering a hybrid of centralized gridding for the upper level head selection and distributed clustering for the lower level head selection. The simulation results show that the proposed approach is more efficient than other distributed algorithms. Therefore, the technique presented in this paper could be further applied to large-scale WSNs. |
doi_str_mv | 10.1109/JIOT.2016.2530682 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1858791366</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7407599</ieee_id><sourcerecordid>1858791366</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-98e69cafe4ebfe94f2a789264f65aa7dfd774c663ad9503e7555871d12620ec33</originalsourceid><addsrcrecordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aj02yOZaitrLYgxVPEuLupN3a7tZk27L_3pQW8TQz8D4zzIPQLSVDSol-eJnO5kNGqBwywYnM2AXqMc5UkkrJLv_112gQwooQEjFBteyhz1GNp5utb_ZQ4vnSAyS57cDjvDkkjzX4RYdHpd221R7weL0LLfiqXuBJBd76Ytlh13j8UXlYQwj4DeoQ51doD43_Djfoytl1gMG59tH70-N8PEny2fN0PMqTgmneJjoDqQvrIIUvBzp1zKpMM5k6KaxVpSuVSgspuS21IByUECJTtKRMMgIF5310f9obH_nZQWjNqtn5Op40NItRTXmk-4ieUoVvQvDgzNZXG-s7Q4k5ijRHkeYo0pxFRubuxFQA8JdXKVFCa_4LcT5u7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1858791366</pqid></control><display><type>article</type><title>An Improved Three-Layer Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Lee, Jin-Shyan ; Kao, Tsung-Yi</creator><creatorcontrib>Lee, Jin-Shyan ; Kao, Tsung-Yi</creatorcontrib><description>Topology control in wireless sensor networks (WSNs) balances the communication load on sensor devices and increases the network lifetime and scalability. Hierarchical or cluster-based design is one of the approaches to conserve the energy of the sensor networks in which the nodes with the higher residual energy could be used to gather data and route the information. However, most of the previous work on clustering has adopted a two-layer hierarchy, and only few methods studied a three-layer scheme instead. Based on a three-layer hierarchy, this paper has proposed a semi-distributed clustering approach by considering a hybrid of centralized gridding for the upper level head selection and distributed clustering for the lower level head selection. The simulation results show that the proposed approach is more efficient than other distributed algorithms. Therefore, the technique presented in this paper could be further applied to large-scale WSNs.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2016.2530682</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptive control ; Algorithms ; Base stations ; Clustering ; Clustering algorithms ; Energy consumption ; Energy efficiency ; Manufacturing ; Mathematical model ; Microbalances ; network lifetime ; protocol architecture ; Residual energy ; Sensors ; Topology ; Wireless communications ; Wireless networks ; Wireless sensor networks ; wireless sensor networks (WSNs)</subject><ispartof>IEEE internet of things journal, 2016-12, Vol.3 (6), p.951-958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-98e69cafe4ebfe94f2a789264f65aa7dfd774c663ad9503e7555871d12620ec33</citedby><cites>FETCH-LOGICAL-c293t-98e69cafe4ebfe94f2a789264f65aa7dfd774c663ad9503e7555871d12620ec33</cites><orcidid>0000-0001-7709-8788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7407599$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7407599$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lee, Jin-Shyan</creatorcontrib><creatorcontrib>Kao, Tsung-Yi</creatorcontrib><title>An Improved Three-Layer Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Topology control in wireless sensor networks (WSNs) balances the communication load on sensor devices and increases the network lifetime and scalability. Hierarchical or cluster-based design is one of the approaches to conserve the energy of the sensor networks in which the nodes with the higher residual energy could be used to gather data and route the information. However, most of the previous work on clustering has adopted a two-layer hierarchy, and only few methods studied a three-layer scheme instead. Based on a three-layer hierarchy, this paper has proposed a semi-distributed clustering approach by considering a hybrid of centralized gridding for the upper level head selection and distributed clustering for the lower level head selection. The simulation results show that the proposed approach is more efficient than other distributed algorithms. Therefore, the technique presented in this paper could be further applied to large-scale WSNs.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Base stations</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Manufacturing</subject><subject>Mathematical model</subject><subject>Microbalances</subject><subject>network lifetime</subject><subject>protocol architecture</subject><subject>Residual energy</subject><subject>Sensors</subject><subject>Topology</subject><subject>Wireless communications</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><subject>wireless sensor networks (WSNs)</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1LAzEQhoMoWGp_gHgJeN6aj02yOZaitrLYgxVPEuLupN3a7tZk27L_3pQW8TQz8D4zzIPQLSVDSol-eJnO5kNGqBwywYnM2AXqMc5UkkrJLv_112gQwooQEjFBteyhz1GNp5utb_ZQ4vnSAyS57cDjvDkkjzX4RYdHpd221R7weL0LLfiqXuBJBd76Ytlh13j8UXlYQwj4DeoQ51doD43_Djfoytl1gMG59tH70-N8PEny2fN0PMqTgmneJjoDqQvrIIUvBzp1zKpMM5k6KaxVpSuVSgspuS21IByUECJTtKRMMgIF5310f9obH_nZQWjNqtn5Op40NItRTXmk-4ieUoVvQvDgzNZXG-s7Q4k5ijRHkeYo0pxFRubuxFQA8JdXKVFCa_4LcT5u7Q</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Lee, Jin-Shyan</creator><creator>Kao, Tsung-Yi</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7709-8788</orcidid></search><sort><creationdate>20161201</creationdate><title>An Improved Three-Layer Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks</title><author>Lee, Jin-Shyan ; Kao, Tsung-Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-98e69cafe4ebfe94f2a789264f65aa7dfd774c663ad9503e7555871d12620ec33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Base stations</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Manufacturing</topic><topic>Mathematical model</topic><topic>Microbalances</topic><topic>network lifetime</topic><topic>protocol architecture</topic><topic>Residual energy</topic><topic>Sensors</topic><topic>Topology</topic><topic>Wireless communications</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><topic>wireless sensor networks (WSNs)</topic><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jin-Shyan</creatorcontrib><creatorcontrib>Kao, Tsung-Yi</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lee, Jin-Shyan</au><au>Kao, Tsung-Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Improved Three-Layer Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>3</volume><issue>6</issue><spage>951</spage><epage>958</epage><pages>951-958</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Topology control in wireless sensor networks (WSNs) balances the communication load on sensor devices and increases the network lifetime and scalability. Hierarchical or cluster-based design is one of the approaches to conserve the energy of the sensor networks in which the nodes with the higher residual energy could be used to gather data and route the information. However, most of the previous work on clustering has adopted a two-layer hierarchy, and only few methods studied a three-layer scheme instead. Based on a three-layer hierarchy, this paper has proposed a semi-distributed clustering approach by considering a hybrid of centralized gridding for the upper level head selection and distributed clustering for the lower level head selection. The simulation results show that the proposed approach is more efficient than other distributed algorithms. Therefore, the technique presented in this paper could be further applied to large-scale WSNs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2016.2530682</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7709-8788</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2327-4662 |
ispartof | IEEE internet of things journal, 2016-12, Vol.3 (6), p.951-958 |
issn | 2327-4662 2327-4662 |
language | eng |
recordid | cdi_proquest_journals_1858791366 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive control Algorithms Base stations Clustering Clustering algorithms Energy consumption Energy efficiency Manufacturing Mathematical model Microbalances network lifetime protocol architecture Residual energy Sensors Topology Wireless communications Wireless networks Wireless sensor networks wireless sensor networks (WSNs) |
title | An Improved Three-Layer Low-Energy Adaptive Clustering Hierarchy for Wireless Sensor Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T13%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Improved%20Three-Layer%20Low-Energy%20Adaptive%20Clustering%20Hierarchy%20for%20Wireless%20Sensor%20Networks&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Lee,%20Jin-Shyan&rft.date=2016-12-01&rft.volume=3&rft.issue=6&rft.spage=951&rft.epage=958&rft.pages=951-958&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2016.2530682&rft_dat=%3Cproquest_RIE%3E1858791366%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1858791366&rft_id=info:pmid/&rft_ieee_id=7407599&rfr_iscdi=true |