Nerolidol-loaded nanospheres prevent behavioral impairment via ameliorating Na^sup +^, K^sup +^-ATPase and AChE activities as well as reducing oxidative stress in the brain of Trypanosoma evansi-infected mice

The aim of this study was to investigate the effect of nerolidol-loaded nanospheres (N-NS) on the treatment of memory impairment caused by Trypanosoma evansi in mice, as well as oxidative stress, and Na+, K+-ATPase and acetylcholinesterase (AChE) activities in brain tissue. Animals were submitted to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Naunyn-Schmiedeberg's archives of pharmacology 2017-02, Vol.390 (2), p.139
Hauptverfasser: Baldissera, Matheus D, Souza, Carine F, Grando, Thirssa H, Moreira, Karen L, S, Schafer, Andressa S, Cossetin, Luciana F, Da Silva, Ana Pt, Da Veiga, Marcelo L, Da Rocha, Maria Izabel, U, M, Stefani, Lenita M, Da Silva, Aleksandro S, Monteiro, Silvia G
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aim of this study was to investigate the effect of nerolidol-loaded nanospheres (N-NS) on the treatment of memory impairment caused by Trypanosoma evansi in mice, as well as oxidative stress, and Na+, K+-ATPase and acetylcholinesterase (AChE) activities in brain tissue. Animals were submitted to behavioral tasks (inhibitory avoidance task and open-field test) 4 days postinfection (PI). Reactive oxygen species (ROS) and thiobarbituric acid-reactive substance (TBARS) levels and catalase (CAT), superoxide dismutase (SOD), Na+, K+-ATPase and AChE activities were measured on the fifth-day PI. T. evansi-infected mice showed memory deficit, increased ROS and TBARS levels and SOD and AChE activities, and decreased CAT and Na+, K+-ATPase activities compared to uninfected mice. N-NS prevented memory impairment and oxidative stress parameters (except SOD activity), while free nerolidol (N-F) restored only CAT activity. Also, N-NS treatment was able to prevent alterations in Na+, K+-ATPase and AChE activities caused by T. evansi infection. A significantly negative correlation was observed between memory and ROS production (p < 0.001; r = -0.941), as well as between memory and AChE activity (p < 0.05; r = -0.774). On the contrary, a significantly positive correlation between memory and Na+, K+-ATPase activity was observed (p < 0.01; r = 0.844). In conclusion, N-NS was able to reverse memory impairment and to prevent increased ROS and TBARS levels due to amelioration of Na+, K+-ATPase and AChE activities and to activation of the antioxidant enzymes, respectively. These results suggest that N-NS treatment may be a useful strategy to treat memory dysfunction and oxidative stress caused by T. evansi infection.
ISSN:0028-1298
1432-1912
DOI:10.1007/s00210-016-1313-8