Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3ZrO12 Solid Electrolyte

Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10−3–10−4 S/cm). Producing densified Li‐ion conductors...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Ceramic Society 2017-01, Vol.100 (1), p.276-285
Hauptverfasser: Rosero‐Navarro, Nataly Carolina, Yamashita, Taira, Miura, Akira, Higuchi, Mikio, Tadanaga, Kiyoharu, Stevenson, J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 285
container_issue 1
container_start_page 276
container_title Journal of the American Ceramic Society
container_volume 100
creator Rosero‐Navarro, Nataly Carolina
Yamashita, Taira
Miura, Akira
Higuchi, Mikio
Tadanaga, Kiyoharu
Stevenson, J. W.
description Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10−3–10−4 S/cm). Producing densified Li‐ion conductors by lowering sintering temperature is an important issue, which can achieve high Li conductivity in garnet oxide by preventing the evaporation of lithium and a good Li‐ion conduction in grain boundary between garnet oxides. In this study, we concentrate on the use of sintering additives to enhance densification and microstructure of Li7La3ZrNbO12 at sintering temperature of 900°C. Glasses in the LiO2‐B2O3‐SiO2‐CaO‐Al2O3 (LBSCA) and BaO‐B2O3‐SiO2‐CaO‐Al2O3 (BBSCA) system with low softening temperature (
doi_str_mv 10.1111/jace.14572
format Article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1857562859</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4298914311</sourcerecordid><originalsourceid>FETCH-LOGICAL-g3322-ee96638e3967d2fbfa355aca95984300397f3219d40aacb062685a3158867bcf3</originalsourceid><addsrcrecordid>eNotUEtOwzAUtBBIlMKGE1hineJP7NjLKg0_RVSisGFjOYlduQpxSVKq7DgCZ-QkOC1v895oRjNPA8A1RjMc5najSzPDMUvICZhgxnBEJOanYIIQIlEiCDoHF123CRBLEU_APrPWlD30Fq5c05vWNWs4ryrXuy_TQd_AF1PrEcCFaTrXD1A3Fczd7_ePC2zqm2pXBn5kgslzEYiF35pRk-SavrdLTODK166CWR2iWl8PvbkEZ1bXnbn631Pwdpe9pg9Rvrx_TOd5tKaUkMgYyTkVhkqeVMQWVlPGdKklC99ThKhMLCVYVjHSuiwQJ1wwTTETgidFaekU3Bx9t63_3JmuVxu_a5sQqbBgCeNEMBlU-Kjau9oMatu6D90OCiM1tqrGVtWhVfU0T7PDRf8AJTRtuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1857562859</pqid></control><display><type>article</type><title>Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3ZrO12 Solid Electrolyte</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Rosero‐Navarro, Nataly Carolina ; Yamashita, Taira ; Miura, Akira ; Higuchi, Mikio ; Tadanaga, Kiyoharu ; Stevenson, J. W.</creator><creatorcontrib>Rosero‐Navarro, Nataly Carolina ; Yamashita, Taira ; Miura, Akira ; Higuchi, Mikio ; Tadanaga, Kiyoharu ; Stevenson, J. W.</creatorcontrib><description>Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10−3–10−4 S/cm). Producing densified Li‐ion conductors by lowering sintering temperature is an important issue, which can achieve high Li conductivity in garnet oxide by preventing the evaporation of lithium and a good Li‐ion conduction in grain boundary between garnet oxides. In this study, we concentrate on the use of sintering additives to enhance densification and microstructure of Li7La3ZrNbO12 at sintering temperature of 900°C. Glasses in the LiO2‐B2O3‐SiO2‐CaO‐Al2O3 (LBSCA) and BaO‐B2O3‐SiO2‐CaO‐Al2O3 (BBSCA) system with low softening temperature (&lt;700°C) were used to modify the grain‐boundary resistance during sintering process. Lithium compounds with low melting point (&lt;850°C) such as LiF, Li2CO3, and LiOH were also studied to improve the rearrangement of grains during the initial and middle stages of sintering. Among these sintering additives, LBSCA and BBSCA were proved to be better sintering additives at reducing the porosity of the pellets and improving connectivity between the grains. Glass additives produced relative densities of 85–92%, whereas those of lithium compounds were 62–77%. Li7La3ZrNbO12 sintered with 4 wt% of LBSCA at 900°C for 10 h achieved a rather high relative density of 85% and total Li‐ion conductivity of 0.8 × 10−4 S/cm at room temperature (30°C).</description><identifier>ISSN: 0002-7820</identifier><identifier>EISSN: 1551-2916</identifier><identifier>DOI: 10.1111/jace.14572</identifier><identifier>CODEN: JACTAW</identifier><language>eng</language><publisher>Columbus: Wiley Subscription Services, Inc</publisher><subject>Ceramics ; Conductivity ; Electrolytes ; garnets ; glass‐ceramics ; Microstructure ; sinter/sintering ; Sintering</subject><ispartof>Journal of the American Ceramic Society, 2017-01, Vol.100 (1), p.276-285</ispartof><rights>2016 The American Ceramic Society</rights><rights>2017 American Ceramic Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-6838-2875</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fjace.14572$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fjace.14572$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Rosero‐Navarro, Nataly Carolina</creatorcontrib><creatorcontrib>Yamashita, Taira</creatorcontrib><creatorcontrib>Miura, Akira</creatorcontrib><creatorcontrib>Higuchi, Mikio</creatorcontrib><creatorcontrib>Tadanaga, Kiyoharu</creatorcontrib><creatorcontrib>Stevenson, J. W.</creatorcontrib><title>Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3ZrO12 Solid Electrolyte</title><title>Journal of the American Ceramic Society</title><description>Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10−3–10−4 S/cm). Producing densified Li‐ion conductors by lowering sintering temperature is an important issue, which can achieve high Li conductivity in garnet oxide by preventing the evaporation of lithium and a good Li‐ion conduction in grain boundary between garnet oxides. In this study, we concentrate on the use of sintering additives to enhance densification and microstructure of Li7La3ZrNbO12 at sintering temperature of 900°C. Glasses in the LiO2‐B2O3‐SiO2‐CaO‐Al2O3 (LBSCA) and BaO‐B2O3‐SiO2‐CaO‐Al2O3 (BBSCA) system with low softening temperature (&lt;700°C) were used to modify the grain‐boundary resistance during sintering process. Lithium compounds with low melting point (&lt;850°C) such as LiF, Li2CO3, and LiOH were also studied to improve the rearrangement of grains during the initial and middle stages of sintering. Among these sintering additives, LBSCA and BBSCA were proved to be better sintering additives at reducing the porosity of the pellets and improving connectivity between the grains. Glass additives produced relative densities of 85–92%, whereas those of lithium compounds were 62–77%. Li7La3ZrNbO12 sintered with 4 wt% of LBSCA at 900°C for 10 h achieved a rather high relative density of 85% and total Li‐ion conductivity of 0.8 × 10−4 S/cm at room temperature (30°C).</description><subject>Ceramics</subject><subject>Conductivity</subject><subject>Electrolytes</subject><subject>garnets</subject><subject>glass‐ceramics</subject><subject>Microstructure</subject><subject>sinter/sintering</subject><subject>Sintering</subject><issn>0002-7820</issn><issn>1551-2916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNotUEtOwzAUtBBIlMKGE1hineJP7NjLKg0_RVSisGFjOYlduQpxSVKq7DgCZ-QkOC1v895oRjNPA8A1RjMc5najSzPDMUvICZhgxnBEJOanYIIQIlEiCDoHF123CRBLEU_APrPWlD30Fq5c05vWNWs4ryrXuy_TQd_AF1PrEcCFaTrXD1A3Fczd7_ePC2zqm2pXBn5kgslzEYiF35pRk-SavrdLTODK166CWR2iWl8PvbkEZ1bXnbn631Pwdpe9pg9Rvrx_TOd5tKaUkMgYyTkVhkqeVMQWVlPGdKklC99ThKhMLCVYVjHSuiwQJ1wwTTETgidFaekU3Bx9t63_3JmuVxu_a5sQqbBgCeNEMBlU-Kjau9oMatu6D90OCiM1tqrGVtWhVfU0T7PDRf8AJTRtuA</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Rosero‐Navarro, Nataly Carolina</creator><creator>Yamashita, Taira</creator><creator>Miura, Akira</creator><creator>Higuchi, Mikio</creator><creator>Tadanaga, Kiyoharu</creator><creator>Stevenson, J. W.</creator><general>Wiley Subscription Services, Inc</general><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0001-6838-2875</orcidid></search><sort><creationdate>201701</creationdate><title>Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3ZrO12 Solid Electrolyte</title><author>Rosero‐Navarro, Nataly Carolina ; Yamashita, Taira ; Miura, Akira ; Higuchi, Mikio ; Tadanaga, Kiyoharu ; Stevenson, J. W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g3322-ee96638e3967d2fbfa355aca95984300397f3219d40aacb062685a3158867bcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ceramics</topic><topic>Conductivity</topic><topic>Electrolytes</topic><topic>garnets</topic><topic>glass‐ceramics</topic><topic>Microstructure</topic><topic>sinter/sintering</topic><topic>Sintering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rosero‐Navarro, Nataly Carolina</creatorcontrib><creatorcontrib>Yamashita, Taira</creatorcontrib><creatorcontrib>Miura, Akira</creatorcontrib><creatorcontrib>Higuchi, Mikio</creatorcontrib><creatorcontrib>Tadanaga, Kiyoharu</creatorcontrib><creatorcontrib>Stevenson, J. W.</creatorcontrib><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Journal of the American Ceramic Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rosero‐Navarro, Nataly Carolina</au><au>Yamashita, Taira</au><au>Miura, Akira</au><au>Higuchi, Mikio</au><au>Tadanaga, Kiyoharu</au><au>Stevenson, J. W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3ZrO12 Solid Electrolyte</atitle><jtitle>Journal of the American Ceramic Society</jtitle><date>2017-01</date><risdate>2017</risdate><volume>100</volume><issue>1</issue><spage>276</spage><epage>285</epage><pages>276-285</pages><issn>0002-7820</issn><eissn>1551-2916</eissn><coden>JACTAW</coden><abstract>Lithium ion conductors with garnet‐type structure are promising candidates for applications in all solid‐state lithium ion batteries, because these materials present a high chemical stability against Li metal and a rather high Li+ conductivity (10−3–10−4 S/cm). Producing densified Li‐ion conductors by lowering sintering temperature is an important issue, which can achieve high Li conductivity in garnet oxide by preventing the evaporation of lithium and a good Li‐ion conduction in grain boundary between garnet oxides. In this study, we concentrate on the use of sintering additives to enhance densification and microstructure of Li7La3ZrNbO12 at sintering temperature of 900°C. Glasses in the LiO2‐B2O3‐SiO2‐CaO‐Al2O3 (LBSCA) and BaO‐B2O3‐SiO2‐CaO‐Al2O3 (BBSCA) system with low softening temperature (&lt;700°C) were used to modify the grain‐boundary resistance during sintering process. Lithium compounds with low melting point (&lt;850°C) such as LiF, Li2CO3, and LiOH were also studied to improve the rearrangement of grains during the initial and middle stages of sintering. Among these sintering additives, LBSCA and BBSCA were proved to be better sintering additives at reducing the porosity of the pellets and improving connectivity between the grains. Glass additives produced relative densities of 85–92%, whereas those of lithium compounds were 62–77%. Li7La3ZrNbO12 sintered with 4 wt% of LBSCA at 900°C for 10 h achieved a rather high relative density of 85% and total Li‐ion conductivity of 0.8 × 10−4 S/cm at room temperature (30°C).</abstract><cop>Columbus</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/jace.14572</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-6838-2875</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0002-7820
ispartof Journal of the American Ceramic Society, 2017-01, Vol.100 (1), p.276-285
issn 0002-7820
1551-2916
language eng
recordid cdi_proquest_journals_1857562859
source Wiley Online Library Journals Frontfile Complete
subjects Ceramics
Conductivity
Electrolytes
garnets
glass‐ceramics
Microstructure
sinter/sintering
Sintering
title Effect of Sintering Additives on Relative Density and Li‐ion Conductivity of Nb‐Doped Li7La3ZrO12 Solid Electrolyte
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A26%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20Sintering%20Additives%20on%20Relative%20Density%20and%20Li%E2%80%90ion%20Conductivity%20of%20Nb%E2%80%90Doped%20Li7La3ZrO12%20Solid%20Electrolyte&rft.jtitle=Journal%20of%20the%20American%20Ceramic%20Society&rft.au=Rosero%E2%80%90Navarro,%20Nataly%20Carolina&rft.date=2017-01&rft.volume=100&rft.issue=1&rft.spage=276&rft.epage=285&rft.pages=276-285&rft.issn=0002-7820&rft.eissn=1551-2916&rft.coden=JACTAW&rft_id=info:doi/10.1111/jace.14572&rft_dat=%3Cproquest_wiley%3E4298914311%3C/proquest_wiley%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1857562859&rft_id=info:pmid/&rfr_iscdi=true