Classification of Outdoor 3D Lidar Data Based on Unsupervised Gaussian Mixture Models

Three-dimensional point clouds acquired with lidars are an important source of data for the classification of outdoor environments by autonomous terrestrial robots. We propose a two-layer classification model. The first layer consists of a Gaussian mixture model. This model is determined in a traini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2017-01, Vol.14 (1), p.5-16
Hauptverfasser: Maligo, Artur, Lacroix, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!