Classification of Outdoor 3D Lidar Data Based on Unsupervised Gaussian Mixture Models
Three-dimensional point clouds acquired with lidars are an important source of data for the classification of outdoor environments by autonomous terrestrial robots. We propose a two-layer classification model. The first layer consists of a Gaussian mixture model. This model is determined in a traini...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2017-01, Vol.14 (1), p.5-16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!