Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow
This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to trun...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2017-01, Vol.32 (1), p.694-704 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 704 |
---|---|
container_issue | 1 |
container_start_page | 694 |
container_title | IEEE transactions on power systems |
container_volume | 32 |
creator | Fei Ni Nguyen, Phuong H. Cobben, Joseph F. G. |
description | This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables. |
doi_str_mv | 10.1109/TPWRS.2016.2558622 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1856388808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460100</ieee_id><sourcerecordid>1856388808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiYh-AX1Z4vPw2q2lfUQCaoKRCMbHppu3WDLW2Q6Rb28R4tNd7n7_u-RHyDWFAaWg7pbz99fFgAEVA8a5FIydkB6NXQpiqE5JD6TkqVQczslFCCsAEHHRI8_3JtiQjj5M29lvTBat8QGTuat3jVtbUyfjT-NCMvlpTROsa5LK-WTuXWEKW9vQ2TLCW_TJtHbbS3JWmTrg1bH2ydt0shw_prOXh6fxaJaWWaa6tGDIs1KBMAKRqwIMKiZNrspqmHNRAKIQppJK5YKbomIyl6xScYgiFxnP-uT2cLf17muDodMrt_FNfKmp5CKTUoKMFDtQpXcheKx06-3a-J2moPfa9J82vdemj9pi6OYQsoj4HxjmAihA9gvg92k9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856388808</pqid></control><display><type>article</type><title>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Fei Ni ; Nguyen, Phuong H. ; Cobben, Joseph F. G.</creator><creatorcontrib>Fei Ni ; Nguyen, Phuong H. ; Cobben, Joseph F. G.</creatorcontrib><description>This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2016.2558622</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Chaos ; Computational modeling ; Copula theory ; distribution system ; Input variables ; Load flow ; Low voltage ; photovoltaic generator ; polynomial chaos ; Polynomials ; Power flow ; probabilistic power flow ; Random variables ; Statistical analysis ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2017-01, Vol.32 (1), p.694-704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</citedby><cites>FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</cites><orcidid>0000-0002-8735-7488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7460100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fei Ni</creatorcontrib><creatorcontrib>Nguyen, Phuong H.</creatorcontrib><creatorcontrib>Cobben, Joseph F. G.</creatorcontrib><title>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.</description><subject>Analytical models</subject><subject>Chaos</subject><subject>Computational modeling</subject><subject>Copula theory</subject><subject>distribution system</subject><subject>Input variables</subject><subject>Load flow</subject><subject>Low voltage</subject><subject>photovoltaic generator</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>Power flow</subject><subject>probabilistic power flow</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAQxxujiYh-AX1Z4vPw2q2lfUQCaoKRCMbHppu3WDLW2Q6Rb28R4tNd7n7_u-RHyDWFAaWg7pbz99fFgAEVA8a5FIydkB6NXQpiqE5JD6TkqVQczslFCCsAEHHRI8_3JtiQjj5M29lvTBat8QGTuat3jVtbUyfjT-NCMvlpTROsa5LK-WTuXWEKW9vQ2TLCW_TJtHbbS3JWmTrg1bH2ydt0shw_prOXh6fxaJaWWaa6tGDIs1KBMAKRqwIMKiZNrspqmHNRAKIQppJK5YKbomIyl6xScYgiFxnP-uT2cLf17muDodMrt_FNfKmp5CKTUoKMFDtQpXcheKx06-3a-J2moPfa9J82vdemj9pi6OYQsoj4HxjmAihA9gvg92k9</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Fei Ni</creator><creator>Nguyen, Phuong H.</creator><creator>Cobben, Joseph F. G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8735-7488</orcidid></search><sort><creationdate>201701</creationdate><title>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</title><author>Fei Ni ; Nguyen, Phuong H. ; Cobben, Joseph F. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Chaos</topic><topic>Computational modeling</topic><topic>Copula theory</topic><topic>distribution system</topic><topic>Input variables</topic><topic>Load flow</topic><topic>Low voltage</topic><topic>photovoltaic generator</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>Power flow</topic><topic>probabilistic power flow</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei Ni</creatorcontrib><creatorcontrib>Nguyen, Phuong H.</creatorcontrib><creatorcontrib>Cobben, Joseph F. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fei Ni</au><au>Nguyen, Phuong H.</au><au>Cobben, Joseph F. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2017-01</date><risdate>2017</risdate><volume>32</volume><issue>1</issue><spage>694</spage><epage>704</epage><pages>694-704</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2016.2558622</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8735-7488</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2017-01, Vol.32 (1), p.694-704 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_proquest_journals_1856388808 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Chaos Computational modeling Copula theory distribution system Input variables Load flow Low voltage photovoltaic generator polynomial chaos Polynomials Power flow probabilistic power flow Random variables Statistical analysis Uncertainty |
title | Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis-Adaptive%20Sparse%20Polynomial%20Chaos%20Expansion%20for%20Probabilistic%20Power%20Flow&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Fei%20Ni&rft.date=2017-01&rft.volume=32&rft.issue=1&rft.spage=694&rft.epage=704&rft.pages=694-704&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2016.2558622&rft_dat=%3Cproquest_RIE%3E1856388808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856388808&rft_id=info:pmid/&rft_ieee_id=7460100&rfr_iscdi=true |