Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow

This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to trun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2017-01, Vol.32 (1), p.694-704
Hauptverfasser: Fei Ni, Nguyen, Phuong H., Cobben, Joseph F. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 704
container_issue 1
container_start_page 694
container_title IEEE transactions on power systems
container_volume 32
creator Fei Ni
Nguyen, Phuong H.
Cobben, Joseph F. G.
description This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.
doi_str_mv 10.1109/TPWRS.2016.2558622
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1856388808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7460100</ieee_id><sourcerecordid>1856388808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</originalsourceid><addsrcrecordid>eNo9kFFPwjAQxxujiYh-AX1Z4vPw2q2lfUQCaoKRCMbHppu3WDLW2Q6Rb28R4tNd7n7_u-RHyDWFAaWg7pbz99fFgAEVA8a5FIydkB6NXQpiqE5JD6TkqVQczslFCCsAEHHRI8_3JtiQjj5M29lvTBat8QGTuat3jVtbUyfjT-NCMvlpTROsa5LK-WTuXWEKW9vQ2TLCW_TJtHbbS3JWmTrg1bH2ydt0shw_prOXh6fxaJaWWaa6tGDIs1KBMAKRqwIMKiZNrspqmHNRAKIQppJK5YKbomIyl6xScYgiFxnP-uT2cLf17muDodMrt_FNfKmp5CKTUoKMFDtQpXcheKx06-3a-J2moPfa9J82vdemj9pi6OYQsoj4HxjmAihA9gvg92k9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856388808</pqid></control><display><type>article</type><title>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</title><source>IEEE Electronic Library (IEL)</source><creator>Fei Ni ; Nguyen, Phuong H. ; Cobben, Joseph F. G.</creator><creatorcontrib>Fei Ni ; Nguyen, Phuong H. ; Cobben, Joseph F. G.</creatorcontrib><description>This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2016.2558622</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Chaos ; Computational modeling ; Copula theory ; distribution system ; Input variables ; Load flow ; Low voltage ; photovoltaic generator ; polynomial chaos ; Polynomials ; Power flow ; probabilistic power flow ; Random variables ; Statistical analysis ; Uncertainty</subject><ispartof>IEEE transactions on power systems, 2017-01, Vol.32 (1), p.694-704</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</citedby><cites>FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</cites><orcidid>0000-0002-8735-7488</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7460100$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7460100$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fei Ni</creatorcontrib><creatorcontrib>Nguyen, Phuong H.</creatorcontrib><creatorcontrib>Cobben, Joseph F. G.</creatorcontrib><title>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.</description><subject>Analytical models</subject><subject>Chaos</subject><subject>Computational modeling</subject><subject>Copula theory</subject><subject>distribution system</subject><subject>Input variables</subject><subject>Load flow</subject><subject>Low voltage</subject><subject>photovoltaic generator</subject><subject>polynomial chaos</subject><subject>Polynomials</subject><subject>Power flow</subject><subject>probabilistic power flow</subject><subject>Random variables</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFFPwjAQxxujiYh-AX1Z4vPw2q2lfUQCaoKRCMbHppu3WDLW2Q6Rb28R4tNd7n7_u-RHyDWFAaWg7pbz99fFgAEVA8a5FIydkB6NXQpiqE5JD6TkqVQczslFCCsAEHHRI8_3JtiQjj5M29lvTBat8QGTuat3jVtbUyfjT-NCMvlpTROsa5LK-WTuXWEKW9vQ2TLCW_TJtHbbS3JWmTrg1bH2ydt0shw_prOXh6fxaJaWWaa6tGDIs1KBMAKRqwIMKiZNrspqmHNRAKIQppJK5YKbomIyl6xScYgiFxnP-uT2cLf17muDodMrt_FNfKmp5CKTUoKMFDtQpXcheKx06-3a-J2moPfa9J82vdemj9pi6OYQsoj4HxjmAihA9gvg92k9</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Fei Ni</creator><creator>Nguyen, Phuong H.</creator><creator>Cobben, Joseph F. G.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8735-7488</orcidid></search><sort><creationdate>201701</creationdate><title>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</title><author>Fei Ni ; Nguyen, Phuong H. ; Cobben, Joseph F. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b2e53c906a6ee59b0ae928a49cf7456b0ee66af899465abf28482f9e66e646353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical models</topic><topic>Chaos</topic><topic>Computational modeling</topic><topic>Copula theory</topic><topic>distribution system</topic><topic>Input variables</topic><topic>Load flow</topic><topic>Low voltage</topic><topic>photovoltaic generator</topic><topic>polynomial chaos</topic><topic>Polynomials</topic><topic>Power flow</topic><topic>probabilistic power flow</topic><topic>Random variables</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fei Ni</creatorcontrib><creatorcontrib>Nguyen, Phuong H.</creatorcontrib><creatorcontrib>Cobben, Joseph F. G.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fei Ni</au><au>Nguyen, Phuong H.</au><au>Cobben, Joseph F. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2017-01</date><risdate>2017</risdate><volume>32</volume><issue>1</issue><spage>694</spage><epage>704</epage><pages>694-704</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper introduces the basis-adaptive sparse polynomial chaos (BASPC) expansion to perform the probabilistic power flow (PPF) analysis in power systems. The proposed method takes advantage of three state-of-the-art uncertainty quantification methodologies reasonably: the hyperbolic scheme to truncate the infinite polynomial chaos (PC) series; the least angle regression (LARS) technique to select the optimal degree of each univariate PC series; and the Copula to deal with nonlinear correlations among random input variables. Consequently, the proposed method brings appealing features to PPF, including the ability to handle the large-scale uncertainty sources; to tackle the nonlinear correlation among the random inputs; to analytically calculate representative statistics of the desired outputs; and to dramatically alleviate the computational burden as of traditional methods. The accuracy and efficiency of the proposed method are verified through either quantitative indicators or graphical results of PPF on both the IEEE European Low Voltage Test Feeder and the IEEE 123 Node Test Feeder, in the presence of more than 100 correlated uncertain input variables.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2016.2558622</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8735-7488</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2017-01, Vol.32 (1), p.694-704
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_1856388808
source IEEE Electronic Library (IEL)
subjects Analytical models
Chaos
Computational modeling
Copula theory
distribution system
Input variables
Load flow
Low voltage
photovoltaic generator
polynomial chaos
Polynomials
Power flow
probabilistic power flow
Random variables
Statistical analysis
Uncertainty
title Basis-Adaptive Sparse Polynomial Chaos Expansion for Probabilistic Power Flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A35%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Basis-Adaptive%20Sparse%20Polynomial%20Chaos%20Expansion%20for%20Probabilistic%20Power%20Flow&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Fei%20Ni&rft.date=2017-01&rft.volume=32&rft.issue=1&rft.spage=694&rft.epage=704&rft.pages=694-704&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2016.2558622&rft_dat=%3Cproquest_RIE%3E1856388808%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856388808&rft_id=info:pmid/&rft_ieee_id=7460100&rfr_iscdi=true