Pareto Optimal Prediction Intervals of Electricity Price

This letter proposes a novel Pareto optimal prediction interval construction approach for electricity price combing extreme learning machine and non-dominated sorting genetic algorithm II (NSGA-II). The Pareto optimal prediction intervals are produced with respect to the formulated two objectives re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2017-01, Vol.32 (1), p.817-819
Hauptverfasser: Wan, Can, Niu, Ming, Song, Yonghua, Xu, Zhao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 819
container_issue 1
container_start_page 817
container_title IEEE transactions on power systems
container_volume 32
creator Wan, Can
Niu, Ming
Song, Yonghua
Xu, Zhao
description This letter proposes a novel Pareto optimal prediction interval construction approach for electricity price combing extreme learning machine and non-dominated sorting genetic algorithm II (NSGA-II). The Pareto optimal prediction intervals are produced with respect to the formulated two objectives reliability and sharpness. The effectiveness of proposed approach has been verified through the numerical studies on Australia electricity market data.
doi_str_mv 10.1109/TPWRS.2016.2550867
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1856388434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7448478</ieee_id><sourcerecordid>1856388434</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-930e574235cd24ee98de74426f3e12c73da166d23b727884c29c474c6c0f2b373</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFb_gF4CnhNnvzdHKbUWCg1a8bikmwlsiU3dbIX-e7e2eJrDvM98PITcUygohfJpVX2-vRcMqCqYlGCUviAjKqXJQenykozAGJmbUsI1uRmGDQCo1BgRU9UBY58td9F_1V1WBWy8i77fZvNtxPBTd0PWt9m0QxeDdz4eUsY7vCVXberh3bmOycfLdDV5zRfL2XzyvMgdFyLmJQeUWjAuXcMEYmka1EIw1XKkzGne1FSphvG1ZtoY4VjphBZOOWjZmms-Jo-nubvQf-9xiHbT78M2rbTUSMUTw0VKsVPKhX4YArZ2F9I_4WAp2KMh-2fIHg3Zs6EEPZwgj4j_QLrOCG34L4q_YO0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856388434</pqid></control><display><type>article</type><title>Pareto Optimal Prediction Intervals of Electricity Price</title><source>IEEE Xplore</source><creator>Wan, Can ; Niu, Ming ; Song, Yonghua ; Xu, Zhao</creator><creatorcontrib>Wan, Can ; Niu, Ming ; Song, Yonghua ; Xu, Zhao</creatorcontrib><description>This letter proposes a novel Pareto optimal prediction interval construction approach for electricity price combing extreme learning machine and non-dominated sorting genetic algorithm II (NSGA-II). The Pareto optimal prediction intervals are produced with respect to the formulated two objectives reliability and sharpness. The effectiveness of proposed approach has been verified through the numerical studies on Australia electricity market data.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2016.2550867</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Electricity price ; Electricity pricing ; Electricity supply industry ; extreme learning machine ; Forecasting ; Genetic algorithms ; Intervals ; Machine learning ; NSGA-II ; Pareto optimization ; Pareto optimum ; Power system reliability ; prediction intervals ; Probabilistic logic ; Reliability ; Sorting algorithms</subject><ispartof>IEEE transactions on power systems, 2017-01, Vol.32 (1), p.817-819</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c344t-930e574235cd24ee98de74426f3e12c73da166d23b727884c29c474c6c0f2b373</citedby><cites>FETCH-LOGICAL-c344t-930e574235cd24ee98de74426f3e12c73da166d23b727884c29c474c6c0f2b373</cites><orcidid>0000-0003-4480-7394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7448478$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7448478$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wan, Can</creatorcontrib><creatorcontrib>Niu, Ming</creatorcontrib><creatorcontrib>Song, Yonghua</creatorcontrib><creatorcontrib>Xu, Zhao</creatorcontrib><title>Pareto Optimal Prediction Intervals of Electricity Price</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This letter proposes a novel Pareto optimal prediction interval construction approach for electricity price combing extreme learning machine and non-dominated sorting genetic algorithm II (NSGA-II). The Pareto optimal prediction intervals are produced with respect to the formulated two objectives reliability and sharpness. The effectiveness of proposed approach has been verified through the numerical studies on Australia electricity market data.</description><subject>Artificial neural networks</subject><subject>Electricity price</subject><subject>Electricity pricing</subject><subject>Electricity supply industry</subject><subject>extreme learning machine</subject><subject>Forecasting</subject><subject>Genetic algorithms</subject><subject>Intervals</subject><subject>Machine learning</subject><subject>NSGA-II</subject><subject>Pareto optimization</subject><subject>Pareto optimum</subject><subject>Power system reliability</subject><subject>prediction intervals</subject><subject>Probabilistic logic</subject><subject>Reliability</subject><subject>Sorting algorithms</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFb_gF4CnhNnvzdHKbUWCg1a8bikmwlsiU3dbIX-e7e2eJrDvM98PITcUygohfJpVX2-vRcMqCqYlGCUviAjKqXJQenykozAGJmbUsI1uRmGDQCo1BgRU9UBY58td9F_1V1WBWy8i77fZvNtxPBTd0PWt9m0QxeDdz4eUsY7vCVXberh3bmOycfLdDV5zRfL2XzyvMgdFyLmJQeUWjAuXcMEYmka1EIw1XKkzGne1FSphvG1ZtoY4VjphBZOOWjZmms-Jo-nubvQf-9xiHbT78M2rbTUSMUTw0VKsVPKhX4YArZ2F9I_4WAp2KMh-2fIHg3Zs6EEPZwgj4j_QLrOCG34L4q_YO0</recordid><startdate>201701</startdate><enddate>201701</enddate><creator>Wan, Can</creator><creator>Niu, Ming</creator><creator>Song, Yonghua</creator><creator>Xu, Zhao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4480-7394</orcidid></search><sort><creationdate>201701</creationdate><title>Pareto Optimal Prediction Intervals of Electricity Price</title><author>Wan, Can ; Niu, Ming ; Song, Yonghua ; Xu, Zhao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-930e574235cd24ee98de74426f3e12c73da166d23b727884c29c474c6c0f2b373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial neural networks</topic><topic>Electricity price</topic><topic>Electricity pricing</topic><topic>Electricity supply industry</topic><topic>extreme learning machine</topic><topic>Forecasting</topic><topic>Genetic algorithms</topic><topic>Intervals</topic><topic>Machine learning</topic><topic>NSGA-II</topic><topic>Pareto optimization</topic><topic>Pareto optimum</topic><topic>Power system reliability</topic><topic>prediction intervals</topic><topic>Probabilistic logic</topic><topic>Reliability</topic><topic>Sorting algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wan, Can</creatorcontrib><creatorcontrib>Niu, Ming</creatorcontrib><creatorcontrib>Song, Yonghua</creatorcontrib><creatorcontrib>Xu, Zhao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wan, Can</au><au>Niu, Ming</au><au>Song, Yonghua</au><au>Xu, Zhao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pareto Optimal Prediction Intervals of Electricity Price</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2017-01</date><risdate>2017</risdate><volume>32</volume><issue>1</issue><spage>817</spage><epage>819</epage><pages>817-819</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This letter proposes a novel Pareto optimal prediction interval construction approach for electricity price combing extreme learning machine and non-dominated sorting genetic algorithm II (NSGA-II). The Pareto optimal prediction intervals are produced with respect to the formulated two objectives reliability and sharpness. The effectiveness of proposed approach has been verified through the numerical studies on Australia electricity market data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2016.2550867</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0003-4480-7394</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2017-01, Vol.32 (1), p.817-819
issn 0885-8950
1558-0679
language eng
recordid cdi_proquest_journals_1856388434
source IEEE Xplore
subjects Artificial neural networks
Electricity price
Electricity pricing
Electricity supply industry
extreme learning machine
Forecasting
Genetic algorithms
Intervals
Machine learning
NSGA-II
Pareto optimization
Pareto optimum
Power system reliability
prediction intervals
Probabilistic logic
Reliability
Sorting algorithms
title Pareto Optimal Prediction Intervals of Electricity Price
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T23%3A59%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pareto%20Optimal%20Prediction%20Intervals%20of%20Electricity%20Price&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Wan,%20Can&rft.date=2017-01&rft.volume=32&rft.issue=1&rft.spage=817&rft.epage=819&rft.pages=817-819&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2016.2550867&rft_dat=%3Cproquest_RIE%3E1856388434%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856388434&rft_id=info:pmid/&rft_ieee_id=7448478&rfr_iscdi=true