Exact Performance Analysis of Ambient RF Energy Harvesting Wireless Sensor Networks With Ginibre Point Process

Ambient radio frequency (RF) energy harvesting methods have drawn significant interests due to their ability to provide energy to wireless devices from ambient RF sources. This paper considers ambient RF energy harvesting wireless sensor networks where a sensor node transmits data to a data sink usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal on selected areas in communications 2016-12, Vol.34 (12), p.3769-3784
Hauptverfasser: Kong, Han-Bae, Flint, Ian, Wang, Ping, Niyato, Dusit, Privault, Nicolas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3784
container_issue 12
container_start_page 3769
container_title IEEE journal on selected areas in communications
container_volume 34
creator Kong, Han-Bae
Flint, Ian
Wang, Ping
Niyato, Dusit
Privault, Nicolas
description Ambient radio frequency (RF) energy harvesting methods have drawn significant interests due to their ability to provide energy to wireless devices from ambient RF sources. This paper considers ambient RF energy harvesting wireless sensor networks where a sensor node transmits data to a data sink using the energy harvested from the signals transmitted by the ambient RF sources. We analyze the performance of the network, i.e., the mean of the harvested energy, the power outage probability, and the transmission outage probability. In many practical networks, the locations of the ambient RF sources are spatially correlated and the ambient sources exhibit repulsive behaviors. Therefore, we model the spatial distribution of the ambient sources as an \alpha -Ginibre point process ( \alpha -GPP), which reflects the repulsion among the RF sources and includes the Poisson point process as a special case. We also assume that the fading channel is Nakagami- m distributed, which also includes Rayleigh fading as a particular case. In this paper, by exploiting the Laplace transform of the \alpha -GPP, we introduce semi-closed-form expressions for the considered performance metrics and provide an upper bound of the power outage probability. The derived expressions are expressed in terms of the Fredholm determinant, which can be computed numerically. In order to reduce the complexity in computing the Fredholm determinant, we provide a simple closed-form expression for the Fredholm determinant, which allows us to evaluate the Fredholm determinant much more efficiently. The accuracy of our analytical results is validated through simulation results.
doi_str_mv 10.1109/JSAC.2016.2621360
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1856384653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7676279</ieee_id><sourcerecordid>1856384653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-4ae9cf4b8d7a135ca81e835066e523a2f9e07635c088eff2334d941d690980093</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYg-gPHSxPPitN3tdo8bgqAhSkTjcVOWWSxCi-2i8vaWQDzNYb7_z8xHyDWDHmNQ3D1Oy36PA5M9LjkTEk5Ih2WZSgBAnZIO5EIkKmfynFyEsARgaap4h9jBr65bOkHfOL_WtkZaWr3aBROoa2i5nhm0LX25pwOLfrGjI-2_MbTGLui78bjCEOgUbXCePmH74_xniIv2gw6NNTOPdOJMLJh4V0f0kpw1ehXw6ji75O1-8NofJePn4UO_HCe1ELJNUo1F3aQzNc81E1mtFUMlMpASMy40bwqEXMYFKIVNw4VI50XK5rKAQgEUoktuD70b77628d5q6bY-PhYqpjIpVCozESl2oGrvQvDYVBtv1trvKgbVXmu111rttVZHrTFzc8gYRPznc5lLnhfiD5dzc2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1856384653</pqid></control><display><type>article</type><title>Exact Performance Analysis of Ambient RF Energy Harvesting Wireless Sensor Networks With Ginibre Point Process</title><source>IEEE Electronic Library (IEL)</source><creator>Kong, Han-Bae ; Flint, Ian ; Wang, Ping ; Niyato, Dusit ; Privault, Nicolas</creator><creatorcontrib>Kong, Han-Bae ; Flint, Ian ; Wang, Ping ; Niyato, Dusit ; Privault, Nicolas</creatorcontrib><description><![CDATA[Ambient radio frequency (RF) energy harvesting methods have drawn significant interests due to their ability to provide energy to wireless devices from ambient RF sources. This paper considers ambient RF energy harvesting wireless sensor networks where a sensor node transmits data to a data sink using the energy harvested from the signals transmitted by the ambient RF sources. We analyze the performance of the network, i.e., the mean of the harvested energy, the power outage probability, and the transmission outage probability. In many practical networks, the locations of the ambient RF sources are spatially correlated and the ambient sources exhibit repulsive behaviors. Therefore, we model the spatial distribution of the ambient sources as an <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-Ginibre point process (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-GPP), which reflects the repulsion among the RF sources and includes the Poisson point process as a special case. We also assume that the fading channel is Nakagami-<inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> distributed, which also includes Rayleigh fading as a particular case. In this paper, by exploiting the Laplace transform of the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-GPP, we introduce semi-closed-form expressions for the considered performance metrics and provide an upper bound of the power outage probability. The derived expressions are expressed in terms of the Fredholm determinant, which can be computed numerically. In order to reduce the complexity in computing the Fredholm determinant, we provide a simple closed-form expression for the Fredholm determinant, which allows us to evaluate the Fredholm determinant much more efficiently. The accuracy of our analytical results is validated through simulation results.]]></description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2016.2621360</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Energy efficiency ; Energy harvesting ; Fading channels ; Ginibre point process ; green communications ; Performance assessment ; Power system faults ; Power system restoration ; Radio frequency ; Remote sensors ; repulsive point process ; RF signals ; stochastic geometry ; Sustainable development ; Wireless networks ; Wireless sensor networks</subject><ispartof>IEEE journal on selected areas in communications, 2016-12, Vol.34 (12), p.3769-3784</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-4ae9cf4b8d7a135ca81e835066e523a2f9e07635c088eff2334d941d690980093</citedby><cites>FETCH-LOGICAL-c336t-4ae9cf4b8d7a135ca81e835066e523a2f9e07635c088eff2334d941d690980093</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7676279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7676279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kong, Han-Bae</creatorcontrib><creatorcontrib>Flint, Ian</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Privault, Nicolas</creatorcontrib><title>Exact Performance Analysis of Ambient RF Energy Harvesting Wireless Sensor Networks With Ginibre Point Process</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description><![CDATA[Ambient radio frequency (RF) energy harvesting methods have drawn significant interests due to their ability to provide energy to wireless devices from ambient RF sources. This paper considers ambient RF energy harvesting wireless sensor networks where a sensor node transmits data to a data sink using the energy harvested from the signals transmitted by the ambient RF sources. We analyze the performance of the network, i.e., the mean of the harvested energy, the power outage probability, and the transmission outage probability. In many practical networks, the locations of the ambient RF sources are spatially correlated and the ambient sources exhibit repulsive behaviors. Therefore, we model the spatial distribution of the ambient sources as an <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-Ginibre point process (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-GPP), which reflects the repulsion among the RF sources and includes the Poisson point process as a special case. We also assume that the fading channel is Nakagami-<inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> distributed, which also includes Rayleigh fading as a particular case. In this paper, by exploiting the Laplace transform of the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-GPP, we introduce semi-closed-form expressions for the considered performance metrics and provide an upper bound of the power outage probability. The derived expressions are expressed in terms of the Fredholm determinant, which can be computed numerically. In order to reduce the complexity in computing the Fredholm determinant, we provide a simple closed-form expression for the Fredholm determinant, which allows us to evaluate the Fredholm determinant much more efficiently. The accuracy of our analytical results is validated through simulation results.]]></description><subject>Energy efficiency</subject><subject>Energy harvesting</subject><subject>Fading channels</subject><subject>Ginibre point process</subject><subject>green communications</subject><subject>Performance assessment</subject><subject>Power system faults</subject><subject>Power system restoration</subject><subject>Radio frequency</subject><subject>Remote sensors</subject><subject>repulsive point process</subject><subject>RF signals</subject><subject>stochastic geometry</subject><subject>Sustainable development</subject><subject>Wireless networks</subject><subject>Wireless sensor networks</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFOAjEQhhujiYg-gPHSxPPitN3tdo8bgqAhSkTjcVOWWSxCi-2i8vaWQDzNYb7_z8xHyDWDHmNQ3D1Oy36PA5M9LjkTEk5Ih2WZSgBAnZIO5EIkKmfynFyEsARgaap4h9jBr65bOkHfOL_WtkZaWr3aBROoa2i5nhm0LX25pwOLfrGjI-2_MbTGLui78bjCEOgUbXCePmH74_xniIv2gw6NNTOPdOJMLJh4V0f0kpw1ehXw6ji75O1-8NofJePn4UO_HCe1ELJNUo1F3aQzNc81E1mtFUMlMpASMy40bwqEXMYFKIVNw4VI50XK5rKAQgEUoktuD70b77628d5q6bY-PhYqpjIpVCozESl2oGrvQvDYVBtv1trvKgbVXmu111rttVZHrTFzc8gYRPznc5lLnhfiD5dzc2U</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Kong, Han-Bae</creator><creator>Flint, Ian</creator><creator>Wang, Ping</creator><creator>Niyato, Dusit</creator><creator>Privault, Nicolas</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20161201</creationdate><title>Exact Performance Analysis of Ambient RF Energy Harvesting Wireless Sensor Networks With Ginibre Point Process</title><author>Kong, Han-Bae ; Flint, Ian ; Wang, Ping ; Niyato, Dusit ; Privault, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-4ae9cf4b8d7a135ca81e835066e523a2f9e07635c088eff2334d941d690980093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Energy efficiency</topic><topic>Energy harvesting</topic><topic>Fading channels</topic><topic>Ginibre point process</topic><topic>green communications</topic><topic>Performance assessment</topic><topic>Power system faults</topic><topic>Power system restoration</topic><topic>Radio frequency</topic><topic>Remote sensors</topic><topic>repulsive point process</topic><topic>RF signals</topic><topic>stochastic geometry</topic><topic>Sustainable development</topic><topic>Wireless networks</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Han-Bae</creatorcontrib><creatorcontrib>Flint, Ian</creatorcontrib><creatorcontrib>Wang, Ping</creatorcontrib><creatorcontrib>Niyato, Dusit</creatorcontrib><creatorcontrib>Privault, Nicolas</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kong, Han-Bae</au><au>Flint, Ian</au><au>Wang, Ping</au><au>Niyato, Dusit</au><au>Privault, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exact Performance Analysis of Ambient RF Energy Harvesting Wireless Sensor Networks With Ginibre Point Process</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>34</volume><issue>12</issue><spage>3769</spage><epage>3784</epage><pages>3769-3784</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract><![CDATA[Ambient radio frequency (RF) energy harvesting methods have drawn significant interests due to their ability to provide energy to wireless devices from ambient RF sources. This paper considers ambient RF energy harvesting wireless sensor networks where a sensor node transmits data to a data sink using the energy harvested from the signals transmitted by the ambient RF sources. We analyze the performance of the network, i.e., the mean of the harvested energy, the power outage probability, and the transmission outage probability. In many practical networks, the locations of the ambient RF sources are spatially correlated and the ambient sources exhibit repulsive behaviors. Therefore, we model the spatial distribution of the ambient sources as an <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-Ginibre point process (<inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-GPP), which reflects the repulsion among the RF sources and includes the Poisson point process as a special case. We also assume that the fading channel is Nakagami-<inline-formula> <tex-math notation="LaTeX">m </tex-math></inline-formula> distributed, which also includes Rayleigh fading as a particular case. In this paper, by exploiting the Laplace transform of the <inline-formula> <tex-math notation="LaTeX">\alpha </tex-math></inline-formula>-GPP, we introduce semi-closed-form expressions for the considered performance metrics and provide an upper bound of the power outage probability. The derived expressions are expressed in terms of the Fredholm determinant, which can be computed numerically. In order to reduce the complexity in computing the Fredholm determinant, we provide a simple closed-form expression for the Fredholm determinant, which allows us to evaluate the Fredholm determinant much more efficiently. The accuracy of our analytical results is validated through simulation results.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2016.2621360</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0733-8716
ispartof IEEE journal on selected areas in communications, 2016-12, Vol.34 (12), p.3769-3784
issn 0733-8716
1558-0008
language eng
recordid cdi_proquest_journals_1856384653
source IEEE Electronic Library (IEL)
subjects Energy efficiency
Energy harvesting
Fading channels
Ginibre point process
green communications
Performance assessment
Power system faults
Power system restoration
Radio frequency
Remote sensors
repulsive point process
RF signals
stochastic geometry
Sustainable development
Wireless networks
Wireless sensor networks
title Exact Performance Analysis of Ambient RF Energy Harvesting Wireless Sensor Networks With Ginibre Point Process
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T18%3A22%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exact%20Performance%20Analysis%20of%20Ambient%20RF%20Energy%20Harvesting%20Wireless%20Sensor%20Networks%20With%20Ginibre%20Point%20Process&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Kong,%20Han-Bae&rft.date=2016-12-01&rft.volume=34&rft.issue=12&rft.spage=3769&rft.epage=3784&rft.pages=3769-3784&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2016.2621360&rft_dat=%3Cproquest_RIE%3E1856384653%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1856384653&rft_id=info:pmid/&rft_ieee_id=7676279&rfr_iscdi=true