A model for sentiment analysis based on ontology and cases

This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista IEEE América Latina 2016-11, Vol.14 (11), p.4560-4566
Hauptverfasser: Ceci, F., Goncalves, A.L., Weber, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4566
container_issue 11
container_start_page 4560
container_title Revista IEEE América Latina
container_volume 14
creator Ceci, F.
Goncalves, A.L.
Weber, R.
description This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.
doi_str_mv 10.1109/TLA.2016.7795829
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1855672340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7795829</ieee_id><sourcerecordid>1855672340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-ee2105e48aa6399302b3d95aea36ef0f0aefe0d5b123558e2a0598395fd0b6223</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKfvgi8BnzsvSdMmvpXhVBj4Mp9Dul6ko21m0j30vzdjU4Tj7rj7vuP4EXLPYMEY6KfNulpwYMWiLLVUXF-QGZO5ykBrfvmvvyY3Me4AhCqUmJHniva-wY46H2jEYWz7lKgdbDfFNtLaRmyoH1KMvvNfU1o1dJum8ZZcOdtFvDvXOflcvWyWb9n64_V9Wa2zLedszBA5A4m5srYQWgvgtWi0tGhFgQ4cWHQIjawZF1Iq5BakVkJL10BdcC7m5PF0dx_89wHjaHb-ENKD0TAlZVFykUNSwUm1DT7GgM7sQ9vbMBkG5kjIJELmSMicCSXLw8nSIuKf_Hf7A9AsYJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855672340</pqid></control><display><type>article</type><title>A model for sentiment analysis based on ontology and cases</title><source>IEEE Electronic Library (IEL)</source><creator>Ceci, F. ; Goncalves, A.L. ; Weber, R.</creator><creatorcontrib>Ceci, F. ; Goncalves, A.L. ; Weber, R.</creatorcontrib><description>This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2016.7795829</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation models ; Adequacy ; Analytical models ; Case-Based Reasoning ; Classification ; Cognition ; Data mining ; Digital cameras ; Domains ; IEEE transactions ; Inference ; Natural language processing ; Ontologies ; Ontology ; Sentiment analysis ; Sentiment Tree ; Support vector machines</subject><ispartof>Revista IEEE América Latina, 2016-11, Vol.14 (11), p.4560-4566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-ee2105e48aa6399302b3d95aea36ef0f0aefe0d5b123558e2a0598395fd0b6223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7795829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7795829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ceci, F.</creatorcontrib><creatorcontrib>Goncalves, A.L.</creatorcontrib><creatorcontrib>Weber, R.</creatorcontrib><title>A model for sentiment analysis based on ontology and cases</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.</description><subject>Adaptation models</subject><subject>Adequacy</subject><subject>Analytical models</subject><subject>Case-Based Reasoning</subject><subject>Classification</subject><subject>Cognition</subject><subject>Data mining</subject><subject>Digital cameras</subject><subject>Domains</subject><subject>IEEE transactions</subject><subject>Inference</subject><subject>Natural language processing</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Sentiment analysis</subject><subject>Sentiment Tree</subject><subject>Support vector machines</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOKfvgi8BnzsvSdMmvpXhVBj4Mp9Dul6ko21m0j30vzdjU4Tj7rj7vuP4EXLPYMEY6KfNulpwYMWiLLVUXF-QGZO5ykBrfvmvvyY3Me4AhCqUmJHniva-wY46H2jEYWz7lKgdbDfFNtLaRmyoH1KMvvNfU1o1dJum8ZZcOdtFvDvXOflcvWyWb9n64_V9Wa2zLedszBA5A4m5srYQWgvgtWi0tGhFgQ4cWHQIjawZF1Iq5BakVkJL10BdcC7m5PF0dx_89wHjaHb-ENKD0TAlZVFykUNSwUm1DT7GgM7sQ9vbMBkG5kjIJELmSMicCSXLw8nSIuKf_Hf7A9AsYJU</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Ceci, F.</creator><creator>Goncalves, A.L.</creator><creator>Weber, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161101</creationdate><title>A model for sentiment analysis based on ontology and cases</title><author>Ceci, F. ; Goncalves, A.L. ; Weber, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-ee2105e48aa6399302b3d95aea36ef0f0aefe0d5b123558e2a0598395fd0b6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Adequacy</topic><topic>Analytical models</topic><topic>Case-Based Reasoning</topic><topic>Classification</topic><topic>Cognition</topic><topic>Data mining</topic><topic>Digital cameras</topic><topic>Domains</topic><topic>IEEE transactions</topic><topic>Inference</topic><topic>Natural language processing</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Sentiment analysis</topic><topic>Sentiment Tree</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ceci, F.</creatorcontrib><creatorcontrib>Goncalves, A.L.</creatorcontrib><creatorcontrib>Weber, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ceci, F.</au><au>Goncalves, A.L.</au><au>Weber, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for sentiment analysis based on ontology and cases</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>14</volume><issue>11</issue><spage>4560</spage><epage>4566</epage><pages>4560-4566</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2016.7795829</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2016-11, Vol.14 (11), p.4560-4566
issn 1548-0992
1548-0992
language eng
recordid cdi_proquest_journals_1855672340
source IEEE Electronic Library (IEL)
subjects Adaptation models
Adequacy
Analytical models
Case-Based Reasoning
Classification
Cognition
Data mining
Digital cameras
Domains
IEEE transactions
Inference
Natural language processing
Ontologies
Ontology
Sentiment analysis
Sentiment Tree
Support vector machines
title A model for sentiment analysis based on ontology and cases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20sentiment%20analysis%20based%20on%20ontology%20and%20cases&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Ceci,%20F.&rft.date=2016-11-01&rft.volume=14&rft.issue=11&rft.spage=4560&rft.epage=4566&rft.pages=4560-4566&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2016.7795829&rft_dat=%3Cproquest_RIE%3E1855672340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855672340&rft_id=info:pmid/&rft_ieee_id=7795829&rfr_iscdi=true