A model for sentiment analysis based on ontology and cases
This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations)...
Gespeichert in:
Veröffentlicht in: | Revista IEEE América Latina 2016-11, Vol.14 (11), p.4560-4566 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4566 |
---|---|
container_issue | 11 |
container_start_page | 4560 |
container_title | Revista IEEE América Latina |
container_volume | 14 |
creator | Ceci, F. Goncalves, A.L. Weber, R. |
description | This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification. |
doi_str_mv | 10.1109/TLA.2016.7795829 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1855672340</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7795829</ieee_id><sourcerecordid>1855672340</sourcerecordid><originalsourceid>FETCH-LOGICAL-c221t-ee2105e48aa6399302b3d95aea36ef0f0aefe0d5b123558e2a0598395fd0b6223</originalsourceid><addsrcrecordid>eNpNkNFLwzAQxoMoOKfvgi8BnzsvSdMmvpXhVBj4Mp9Dul6ko21m0j30vzdjU4Tj7rj7vuP4EXLPYMEY6KfNulpwYMWiLLVUXF-QGZO5ykBrfvmvvyY3Me4AhCqUmJHniva-wY46H2jEYWz7lKgdbDfFNtLaRmyoH1KMvvNfU1o1dJum8ZZcOdtFvDvXOflcvWyWb9n64_V9Wa2zLedszBA5A4m5srYQWgvgtWi0tGhFgQ4cWHQIjawZF1Iq5BakVkJL10BdcC7m5PF0dx_89wHjaHb-ENKD0TAlZVFykUNSwUm1DT7GgM7sQ9vbMBkG5kjIJELmSMicCSXLw8nSIuKf_Hf7A9AsYJU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855672340</pqid></control><display><type>article</type><title>A model for sentiment analysis based on ontology and cases</title><source>IEEE Electronic Library (IEL)</source><creator>Ceci, F. ; Goncalves, A.L. ; Weber, R.</creator><creatorcontrib>Ceci, F. ; Goncalves, A.L. ; Weber, R.</creatorcontrib><description>This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2016.7795829</identifier><language>eng</language><publisher>Los Alamitos: IEEE</publisher><subject>Adaptation models ; Adequacy ; Analytical models ; Case-Based Reasoning ; Classification ; Cognition ; Data mining ; Digital cameras ; Domains ; IEEE transactions ; Inference ; Natural language processing ; Ontologies ; Ontology ; Sentiment analysis ; Sentiment Tree ; Support vector machines</subject><ispartof>Revista IEEE América Latina, 2016-11, Vol.14 (11), p.4560-4566</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c221t-ee2105e48aa6399302b3d95aea36ef0f0aefe0d5b123558e2a0598395fd0b6223</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7795829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7795829$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ceci, F.</creatorcontrib><creatorcontrib>Goncalves, A.L.</creatorcontrib><creatorcontrib>Weber, R.</creatorcontrib><title>A model for sentiment analysis based on ontology and cases</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.</description><subject>Adaptation models</subject><subject>Adequacy</subject><subject>Analytical models</subject><subject>Case-Based Reasoning</subject><subject>Classification</subject><subject>Cognition</subject><subject>Data mining</subject><subject>Digital cameras</subject><subject>Domains</subject><subject>IEEE transactions</subject><subject>Inference</subject><subject>Natural language processing</subject><subject>Ontologies</subject><subject>Ontology</subject><subject>Sentiment analysis</subject><subject>Sentiment Tree</subject><subject>Support vector machines</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkNFLwzAQxoMoOKfvgi8BnzsvSdMmvpXhVBj4Mp9Dul6ko21m0j30vzdjU4Tj7rj7vuP4EXLPYMEY6KfNulpwYMWiLLVUXF-QGZO5ykBrfvmvvyY3Me4AhCqUmJHniva-wY46H2jEYWz7lKgdbDfFNtLaRmyoH1KMvvNfU1o1dJum8ZZcOdtFvDvXOflcvWyWb9n64_V9Wa2zLedszBA5A4m5srYQWgvgtWi0tGhFgQ4cWHQIjawZF1Iq5BakVkJL10BdcC7m5PF0dx_89wHjaHb-ENKD0TAlZVFykUNSwUm1DT7GgM7sQ9vbMBkG5kjIJELmSMicCSXLw8nSIuKf_Hf7A9AsYJU</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Ceci, F.</creator><creator>Goncalves, A.L.</creator><creator>Weber, R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161101</creationdate><title>A model for sentiment analysis based on ontology and cases</title><author>Ceci, F. ; Goncalves, A.L. ; Weber, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c221t-ee2105e48aa6399302b3d95aea36ef0f0aefe0d5b123558e2a0598395fd0b6223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptation models</topic><topic>Adequacy</topic><topic>Analytical models</topic><topic>Case-Based Reasoning</topic><topic>Classification</topic><topic>Cognition</topic><topic>Data mining</topic><topic>Digital cameras</topic><topic>Domains</topic><topic>IEEE transactions</topic><topic>Inference</topic><topic>Natural language processing</topic><topic>Ontologies</topic><topic>Ontology</topic><topic>Sentiment analysis</topic><topic>Sentiment Tree</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Ceci, F.</creatorcontrib><creatorcontrib>Goncalves, A.L.</creatorcontrib><creatorcontrib>Weber, R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ceci, F.</au><au>Goncalves, A.L.</au><au>Weber, R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for sentiment analysis based on ontology and cases</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>14</volume><issue>11</issue><spage>4560</spage><epage>4566</epage><pages>4560-4566</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>This work intends to combine domain ontology with natural language processing techniques to identify the sentiment behind judgments aiming to provide an explanation for such polarization. Also, it intends to use the Case-Based Reasoning strategy in order to learn from past reasonings (polarizations) so they can be used in new polarizations. Some steps have been developed for treatment of negation, adequacy of sentiment lexicon for a domain and adaptation of ambiguous terms classification based on past ratings. Tests were developed in two distinct areas, digital cameras and movies, to justify the model evolution until its final proposal. It was observed that the accuracy obtained by the proposed model overcomes standard statistical approaches. These results demonstrate that the model contributes to the sentiment analysis area, both as a solution that provides high levels of accuracy, as well as the possibility to present the track to achieve a particular classification.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2016.7795829</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1548-0992 |
ispartof | Revista IEEE América Latina, 2016-11, Vol.14 (11), p.4560-4566 |
issn | 1548-0992 1548-0992 |
language | eng |
recordid | cdi_proquest_journals_1855672340 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation models Adequacy Analytical models Case-Based Reasoning Classification Cognition Data mining Digital cameras Domains IEEE transactions Inference Natural language processing Ontologies Ontology Sentiment analysis Sentiment Tree Support vector machines |
title | A model for sentiment analysis based on ontology and cases |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20sentiment%20analysis%20based%20on%20ontology%20and%20cases&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Ceci,%20F.&rft.date=2016-11-01&rft.volume=14&rft.issue=11&rft.spage=4560&rft.epage=4566&rft.pages=4560-4566&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2016.7795829&rft_dat=%3Cproquest_RIE%3E1855672340%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855672340&rft_id=info:pmid/&rft_ieee_id=7795829&rfr_iscdi=true |