Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials

The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002 ; Philos Trans R Soc Math Phys Eng S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archives of computational methods in engineering 2017-01, Vol.24 (1), p.89-113
1. Verfasser: Zohdi, T. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 113
container_issue 1
container_start_page 89
container_title Archives of computational methods in engineering
container_volume 24
creator Zohdi, T. I.
description The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002 ; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003 ; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004 ; Comput Methods Appl Mech Eng 196:3927–3950, 2007 ; Int J Numer Methods Eng 76:1250–1279, 2008 ; Comput Methods Appl Mech Eng 199:79–101, 2010 ; Arch Comput Methods Eng 1–17. doi: 10.1007/s11831-013-9092-6 , 2013 ; Comput Mech Eng Sci 98(3):261–277, 2014 ; Comput Mech 54:171–191, 2014 ; J Manuf Sci Eng ASME doi: 10.1115/1.4029327 , 2015 ; CIRP J Manuf Sci Technol 10:77–83, 2015 ; Comput Mech 56:613–630, 2015 ; Introduction to computational micromechanics. Springer, Berlin, 2008 ; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007 ; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012 ), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.
doi_str_mv 10.1007/s11831-015-9160-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1855040811</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4292415301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-d87afc2606eda8cc361db5e679e7478ca6885b2ccca48683a1b24020f520b5ac3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouFZ_gLeC5-hM2qTpURZXhV1cWD2HNE2XLt1mTdqD_npT6sGLpxke33vMPEJuEe4RoHgIiDJDCshpiQIonpEFSikoFjI_jztmOc1AwCW5CuEAwPOyZAuy27jadm2_T3Vfp7v2OHZ6aF2fuiZd62B9uvXO2BAmJGpb7YfWTJClq7E3E6u79tvW6SZqvtVduCYXTRz25ncm5GP19L58oeu359fl45qaTLKB1rLQjWEChK21NCYTWFfciqK0RV5Io4WUvGLGGJ1LITONFcuBQcMZVFybLCF3c-7Ju8_RhkEd3OjjOUGh5BxykPHthOBMGe9C8LZRJ98etf9SCGrqTs3dqdidmrpTk4fNnhDZfm_9n-R_TT_xBHHy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1855040811</pqid></control><display><type>article</type><title>Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials</title><source>Springer Nature - Complete Springer Journals</source><creator>Zohdi, T. I.</creator><creatorcontrib>Zohdi, T. I.</creatorcontrib><description>The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002 ; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003 ; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004 ; Comput Methods Appl Mech Eng 196:3927–3950, 2007 ; Int J Numer Methods Eng 76:1250–1279, 2008 ; Comput Methods Appl Mech Eng 199:79–101, 2010 ; Arch Comput Methods Eng 1–17. doi: 10.1007/s11831-013-9092-6 , 2013 ; Comput Mech Eng Sci 98(3):261–277, 2014 ; Comput Mech 54:171–191, 2014 ; J Manuf Sci Eng ASME doi: 10.1115/1.4029327 , 2015 ; CIRP J Manuf Sci Technol 10:77–83, 2015 ; Comput Mech 56:613–630, 2015 ; Introduction to computational micromechanics. Springer, Berlin, 2008 ; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007 ; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012 ), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.</description><identifier>ISSN: 1134-3060</identifier><identifier>EISSN: 1886-1784</identifier><identifier>DOI: 10.1007/s11831-015-9160-1</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Additive manufacturing ; Advanced manufacturing technologies ; Engineering ; Lasers ; Mathematical and Computational Engineering ; Original Paper ; Simulation</subject><ispartof>Archives of computational methods in engineering, 2017-01, Vol.24 (1), p.89-113</ispartof><rights>CIMNE, Barcelona, Spain 2015</rights><rights>Archives of Computational Methods in Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-d87afc2606eda8cc361db5e679e7478ca6885b2ccca48683a1b24020f520b5ac3</citedby><cites>FETCH-LOGICAL-c382t-d87afc2606eda8cc361db5e679e7478ca6885b2ccca48683a1b24020f520b5ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11831-015-9160-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11831-015-9160-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Zohdi, T. I.</creatorcontrib><title>Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials</title><title>Archives of computational methods in engineering</title><addtitle>Arch Computat Methods Eng</addtitle><description>The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002 ; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003 ; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004 ; Comput Methods Appl Mech Eng 196:3927–3950, 2007 ; Int J Numer Methods Eng 76:1250–1279, 2008 ; Comput Methods Appl Mech Eng 199:79–101, 2010 ; Arch Comput Methods Eng 1–17. doi: 10.1007/s11831-013-9092-6 , 2013 ; Comput Mech Eng Sci 98(3):261–277, 2014 ; Comput Mech 54:171–191, 2014 ; J Manuf Sci Eng ASME doi: 10.1115/1.4029327 , 2015 ; CIRP J Manuf Sci Technol 10:77–83, 2015 ; Comput Mech 56:613–630, 2015 ; Introduction to computational micromechanics. Springer, Berlin, 2008 ; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007 ; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012 ), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.</description><subject>Additive manufacturing</subject><subject>Advanced manufacturing technologies</subject><subject>Engineering</subject><subject>Lasers</subject><subject>Mathematical and Computational Engineering</subject><subject>Original Paper</subject><subject>Simulation</subject><issn>1134-3060</issn><issn>1886-1784</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kEFLxDAQhYMouFZ_gLeC5-hM2qTpURZXhV1cWD2HNE2XLt1mTdqD_npT6sGLpxke33vMPEJuEe4RoHgIiDJDCshpiQIonpEFSikoFjI_jztmOc1AwCW5CuEAwPOyZAuy27jadm2_T3Vfp7v2OHZ6aF2fuiZd62B9uvXO2BAmJGpb7YfWTJClq7E3E6u79tvW6SZqvtVduCYXTRz25ncm5GP19L58oeu359fl45qaTLKB1rLQjWEChK21NCYTWFfciqK0RV5Io4WUvGLGGJ1LITONFcuBQcMZVFybLCF3c-7Ju8_RhkEd3OjjOUGh5BxykPHthOBMGe9C8LZRJ98etf9SCGrqTs3dqdidmrpTk4fNnhDZfm_9n-R_TT_xBHHy</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Zohdi, T. I.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170101</creationdate><title>Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials</title><author>Zohdi, T. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-d87afc2606eda8cc361db5e679e7478ca6885b2ccca48683a1b24020f520b5ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Additive manufacturing</topic><topic>Advanced manufacturing technologies</topic><topic>Engineering</topic><topic>Lasers</topic><topic>Mathematical and Computational Engineering</topic><topic>Original Paper</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zohdi, T. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Archives of computational methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zohdi, T. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials</atitle><jtitle>Archives of computational methods in engineering</jtitle><stitle>Arch Computat Methods Eng</stitle><date>2017-01-01</date><risdate>2017</risdate><volume>24</volume><issue>1</issue><spage>89</spage><epage>113</epage><pages>89-113</pages><issn>1134-3060</issn><eissn>1886-1784</eissn><abstract>The objective of this paper is to focus on one of the “building blocks” of additive manufacturing technologies, namely selective laser-processing of particle-functionalized materials. Following a series of work in Zohdi (Int J Numer Methods Eng 53:1511–1532, 2002 ; Philos Trans R Soc Math Phys Eng Sci 361(1806):1021–1043, 2003 ; Comput Methods Appl Mech Eng 193(6–8):679–699, 2004 ; Comput Methods Appl Mech Eng 196:3927–3950, 2007 ; Int J Numer Methods Eng 76:1250–1279, 2008 ; Comput Methods Appl Mech Eng 199:79–101, 2010 ; Arch Comput Methods Eng 1–17. doi: 10.1007/s11831-013-9092-6 , 2013 ; Comput Mech Eng Sci 98(3):261–277, 2014 ; Comput Mech 54:171–191, 2014 ; J Manuf Sci Eng ASME doi: 10.1115/1.4029327 , 2015 ; CIRP J Manuf Sci Technol 10:77–83, 2015 ; Comput Mech 56:613–630, 2015 ; Introduction to computational micromechanics. Springer, Berlin, 2008 ; Introduction to the modeling and simulation of particulate flows. SIAM (Society for Industrial and Applied Mathematics), Philadelphia, 2007 ; Electromagnetic properties of multiphase dielectrics: a primer on modeling, theory and computation. Springer, Berlin, 2012 ), a laser-penetration model, in conjunction with a Finite Difference Time Domain Method using an immersed microstructure method, is developed. Because optical, thermal and mechanical multifield coupling is present, a recursive, staggered, temporally-adaptive scheme is developed to resolve the internal microstructural fields. The time step adaptation allows the numerical scheme to iteratively resolve the changing physical fields by refining the time-steps during phases of the process when the system is undergoing large changes on a relatively small time-scale and can also enlarge the time-steps when the processes are relatively slow. The spatial discretization grids are uniform and dense enough to capture fine-scale changes in the fields. The microstructure is embedded into the spatial discretization and the regular grid allows one to generate a matrix-free iterative formulation which is amenable to rapid computation, with minimal memory requirements, making it ideal for laptop computation. Numerical examples are provided to illustrate the modeling and simulation approach, which by design, is straightforward to computationally implement, in order to be easily utilized by researchers in the field. More advanced conduction models, based on thermal-relaxation, which are a key feature of fast-pulsing laser technologies, are also discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11831-015-9160-1</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1134-3060
ispartof Archives of computational methods in engineering, 2017-01, Vol.24 (1), p.89-113
issn 1134-3060
1886-1784
language eng
recordid cdi_proquest_journals_1855040811
source Springer Nature - Complete Springer Journals
subjects Additive manufacturing
Advanced manufacturing technologies
Engineering
Lasers
Mathematical and Computational Engineering
Original Paper
Simulation
title Modeling and Simulation of Laser Processing of Particulate-Functionalized Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T13%3A33%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Simulation%20of%20Laser%20Processing%20of%20Particulate-Functionalized%20Materials&rft.jtitle=Archives%20of%20computational%20methods%20in%20engineering&rft.au=Zohdi,%20T.%20I.&rft.date=2017-01-01&rft.volume=24&rft.issue=1&rft.spage=89&rft.epage=113&rft.pages=89-113&rft.issn=1134-3060&rft.eissn=1886-1784&rft_id=info:doi/10.1007/s11831-015-9160-1&rft_dat=%3Cproquest_cross%3E4292415301%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1855040811&rft_id=info:pmid/&rfr_iscdi=true