Imaging the He^sub 2^ quantum halo state using a free electron laser

Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2016-12, Vol.113 (51), p.14651
Hauptverfasser: Zeller, Stefan, Kunitski, Maksim, Voigtsberger, Jörg, Kalinin, Anton, Schottelius, Alexander, Schober, Carl, Waitz, Markus, Sann, Hendrik, Hartung, Alexander, Bauer, Tobias, Pitzer, Martin, Trinter, Florian, Goihl, Christoph, Janke, Christian, Richter, Martin, Kastirke, Gregor, Weller, Miriam, Czasch, Achim, Kitzler, Markus, Braune, Markus, Grisenti, Robert E, Schöllkopf, Wieland, Schmidt, Lothar PhH, Schöffler, Markus S, Williams, Joshua B, Jahnke, Till, Dörner, Reinhard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 51
container_start_page 14651
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 113
creator Zeller, Stefan
Kunitski, Maksim
Voigtsberger, Jörg
Kalinin, Anton
Schottelius, Alexander
Schober, Carl
Waitz, Markus
Sann, Hendrik
Hartung, Alexander
Bauer, Tobias
Pitzer, Martin
Trinter, Florian
Goihl, Christoph
Janke, Christian
Richter, Martin
Kastirke, Gregor
Weller, Miriam
Czasch, Achim
Kitzler, Markus
Braune, Markus
Grisenti, Robert E
Schöllkopf, Wieland
Schmidt, Lothar PhH
Schöffler, Markus S
Williams, Joshua B
Jahnke, Till
Dörner, Reinhard
description Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_1853314655</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4287956741</sourcerecordid><originalsourceid>FETCH-proquest_journals_18533146553</originalsourceid><addsrcrecordid>eNqNyssOgjAQQNHGaCI-_mES1yQttAhrH8G9a0k1A0hKK532_9XED3B1F_fMWCJ4JdJCVnzOEs6zfVrKTC7ZimjgnFeq5Ak7XkbdPW0HoUeo8UbxDtkNpqhtiCP02jigoANCpC_T0HpEQIOP4J0Fown9hi1abQi3v67Z7ny6Hur05d0UkUIzuOjtZzWiVHkuZKFU_p96A8UqOwg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1853314655</pqid></control><display><type>article</type><title>Imaging the He^sub 2^ quantum halo state using a free electron laser</title><source>JSTOR Archive Collection A-Z Listing</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zeller, Stefan ; Kunitski, Maksim ; Voigtsberger, Jörg ; Kalinin, Anton ; Schottelius, Alexander ; Schober, Carl ; Waitz, Markus ; Sann, Hendrik ; Hartung, Alexander ; Bauer, Tobias ; Pitzer, Martin ; Trinter, Florian ; Goihl, Christoph ; Janke, Christian ; Richter, Martin ; Kastirke, Gregor ; Weller, Miriam ; Czasch, Achim ; Kitzler, Markus ; Braune, Markus ; Grisenti, Robert E ; Schöllkopf, Wieland ; Schmidt, Lothar PhH ; Schöffler, Markus S ; Williams, Joshua B ; Jahnke, Till ; Dörner, Reinhard</creator><creatorcontrib>Zeller, Stefan ; Kunitski, Maksim ; Voigtsberger, Jörg ; Kalinin, Anton ; Schottelius, Alexander ; Schober, Carl ; Waitz, Markus ; Sann, Hendrik ; Hartung, Alexander ; Bauer, Tobias ; Pitzer, Martin ; Trinter, Florian ; Goihl, Christoph ; Janke, Christian ; Richter, Martin ; Kastirke, Gregor ; Weller, Miriam ; Czasch, Achim ; Kitzler, Markus ; Braune, Markus ; Grisenti, Robert E ; Schöllkopf, Wieland ; Schmidt, Lothar PhH ; Schöffler, Markus S ; Williams, Joshua B ; Jahnke, Till ; Dörner, Reinhard</creatorcontrib><description>Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Atoms &amp; subatomic particles ; Electrons ; Helium ; Molecules ; Probability ; Quantum physics</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (51), p.14651</ispartof><rights>Copyright National Academy of Sciences Dec 20, 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Zeller, Stefan</creatorcontrib><creatorcontrib>Kunitski, Maksim</creatorcontrib><creatorcontrib>Voigtsberger, Jörg</creatorcontrib><creatorcontrib>Kalinin, Anton</creatorcontrib><creatorcontrib>Schottelius, Alexander</creatorcontrib><creatorcontrib>Schober, Carl</creatorcontrib><creatorcontrib>Waitz, Markus</creatorcontrib><creatorcontrib>Sann, Hendrik</creatorcontrib><creatorcontrib>Hartung, Alexander</creatorcontrib><creatorcontrib>Bauer, Tobias</creatorcontrib><creatorcontrib>Pitzer, Martin</creatorcontrib><creatorcontrib>Trinter, Florian</creatorcontrib><creatorcontrib>Goihl, Christoph</creatorcontrib><creatorcontrib>Janke, Christian</creatorcontrib><creatorcontrib>Richter, Martin</creatorcontrib><creatorcontrib>Kastirke, Gregor</creatorcontrib><creatorcontrib>Weller, Miriam</creatorcontrib><creatorcontrib>Czasch, Achim</creatorcontrib><creatorcontrib>Kitzler, Markus</creatorcontrib><creatorcontrib>Braune, Markus</creatorcontrib><creatorcontrib>Grisenti, Robert E</creatorcontrib><creatorcontrib>Schöllkopf, Wieland</creatorcontrib><creatorcontrib>Schmidt, Lothar PhH</creatorcontrib><creatorcontrib>Schöffler, Markus S</creatorcontrib><creatorcontrib>Williams, Joshua B</creatorcontrib><creatorcontrib>Jahnke, Till</creatorcontrib><creatorcontrib>Dörner, Reinhard</creatorcontrib><title>Imaging the He^sub 2^ quantum halo state using a free electron laser</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations.</description><subject>Atoms &amp; subatomic particles</subject><subject>Electrons</subject><subject>Helium</subject><subject>Molecules</subject><subject>Probability</subject><subject>Quantum physics</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqNyssOgjAQQNHGaCI-_mES1yQttAhrH8G9a0k1A0hKK532_9XED3B1F_fMWCJ4JdJCVnzOEs6zfVrKTC7ZimjgnFeq5Ak7XkbdPW0HoUeo8UbxDtkNpqhtiCP02jigoANCpC_T0HpEQIOP4J0Fown9hi1abQi3v67Z7ny6Hur05d0UkUIzuOjtZzWiVHkuZKFU_p96A8UqOwg</recordid><startdate>20161220</startdate><enddate>20161220</enddate><creator>Zeller, Stefan</creator><creator>Kunitski, Maksim</creator><creator>Voigtsberger, Jörg</creator><creator>Kalinin, Anton</creator><creator>Schottelius, Alexander</creator><creator>Schober, Carl</creator><creator>Waitz, Markus</creator><creator>Sann, Hendrik</creator><creator>Hartung, Alexander</creator><creator>Bauer, Tobias</creator><creator>Pitzer, Martin</creator><creator>Trinter, Florian</creator><creator>Goihl, Christoph</creator><creator>Janke, Christian</creator><creator>Richter, Martin</creator><creator>Kastirke, Gregor</creator><creator>Weller, Miriam</creator><creator>Czasch, Achim</creator><creator>Kitzler, Markus</creator><creator>Braune, Markus</creator><creator>Grisenti, Robert E</creator><creator>Schöllkopf, Wieland</creator><creator>Schmidt, Lothar PhH</creator><creator>Schöffler, Markus S</creator><creator>Williams, Joshua B</creator><creator>Jahnke, Till</creator><creator>Dörner, Reinhard</creator><general>National Academy of Sciences</general><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20161220</creationdate><title>Imaging the He^sub 2^ quantum halo state using a free electron laser</title><author>Zeller, Stefan ; Kunitski, Maksim ; Voigtsberger, Jörg ; Kalinin, Anton ; Schottelius, Alexander ; Schober, Carl ; Waitz, Markus ; Sann, Hendrik ; Hartung, Alexander ; Bauer, Tobias ; Pitzer, Martin ; Trinter, Florian ; Goihl, Christoph ; Janke, Christian ; Richter, Martin ; Kastirke, Gregor ; Weller, Miriam ; Czasch, Achim ; Kitzler, Markus ; Braune, Markus ; Grisenti, Robert E ; Schöllkopf, Wieland ; Schmidt, Lothar PhH ; Schöffler, Markus S ; Williams, Joshua B ; Jahnke, Till ; Dörner, Reinhard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_18533146553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atoms &amp; subatomic particles</topic><topic>Electrons</topic><topic>Helium</topic><topic>Molecules</topic><topic>Probability</topic><topic>Quantum physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zeller, Stefan</creatorcontrib><creatorcontrib>Kunitski, Maksim</creatorcontrib><creatorcontrib>Voigtsberger, Jörg</creatorcontrib><creatorcontrib>Kalinin, Anton</creatorcontrib><creatorcontrib>Schottelius, Alexander</creatorcontrib><creatorcontrib>Schober, Carl</creatorcontrib><creatorcontrib>Waitz, Markus</creatorcontrib><creatorcontrib>Sann, Hendrik</creatorcontrib><creatorcontrib>Hartung, Alexander</creatorcontrib><creatorcontrib>Bauer, Tobias</creatorcontrib><creatorcontrib>Pitzer, Martin</creatorcontrib><creatorcontrib>Trinter, Florian</creatorcontrib><creatorcontrib>Goihl, Christoph</creatorcontrib><creatorcontrib>Janke, Christian</creatorcontrib><creatorcontrib>Richter, Martin</creatorcontrib><creatorcontrib>Kastirke, Gregor</creatorcontrib><creatorcontrib>Weller, Miriam</creatorcontrib><creatorcontrib>Czasch, Achim</creatorcontrib><creatorcontrib>Kitzler, Markus</creatorcontrib><creatorcontrib>Braune, Markus</creatorcontrib><creatorcontrib>Grisenti, Robert E</creatorcontrib><creatorcontrib>Schöllkopf, Wieland</creatorcontrib><creatorcontrib>Schmidt, Lothar PhH</creatorcontrib><creatorcontrib>Schöffler, Markus S</creatorcontrib><creatorcontrib>Williams, Joshua B</creatorcontrib><creatorcontrib>Jahnke, Till</creatorcontrib><creatorcontrib>Dörner, Reinhard</creatorcontrib><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zeller, Stefan</au><au>Kunitski, Maksim</au><au>Voigtsberger, Jörg</au><au>Kalinin, Anton</au><au>Schottelius, Alexander</au><au>Schober, Carl</au><au>Waitz, Markus</au><au>Sann, Hendrik</au><au>Hartung, Alexander</au><au>Bauer, Tobias</au><au>Pitzer, Martin</au><au>Trinter, Florian</au><au>Goihl, Christoph</au><au>Janke, Christian</au><au>Richter, Martin</au><au>Kastirke, Gregor</au><au>Weller, Miriam</au><au>Czasch, Achim</au><au>Kitzler, Markus</au><au>Braune, Markus</au><au>Grisenti, Robert E</au><au>Schöllkopf, Wieland</au><au>Schmidt, Lothar PhH</au><au>Schöffler, Markus S</au><au>Williams, Joshua B</au><au>Jahnke, Till</au><au>Dörner, Reinhard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Imaging the He^sub 2^ quantum halo state using a free electron laser</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2016-12-20</date><risdate>2016</risdate><volume>113</volume><issue>51</issue><spage>14651</spage><pages>14651-</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Quantum tunneling is a ubiquitous phenomenon in nature and crucial for many technological applications. It allows quantum particles to reach regions in space which are energetically not accessible according to classical mechanics. In this "tunneling region," the particle density is known to decay exponentially. This behavior is universal across all energy scales from nuclear physics to chemistry and solid state systems. Although typically only a small fraction of a particle wavefunction extends into the tunneling region, we present here an extreme quantum system: a gigantic molecule consisting of two helium atoms, with an 80% probability that its two nuclei will be found in this classical forbidden region. This circumstance allows us to directly image the exponentially decaying density of a tunneling particle, which we achieved for over two orders of magnitude. Imaging a tunneling particle shows one of the few features of our world that is truly universal: the probability to find one of the constituents of bound matter far away is never zero but decreases exponentially. The results were obtained by Coulomb explosion imaging using a free electron laser and furthermore yielded He2's binding energy of 151.9±13.3 neV, which is in agreement with most recent calculations.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2016-12, Vol.113 (51), p.14651
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_journals_1853314655
source JSTOR Archive Collection A-Z Listing; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Atoms & subatomic particles
Electrons
Helium
Molecules
Probability
Quantum physics
title Imaging the He^sub 2^ quantum halo state using a free electron laser
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T15%3A17%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Imaging%20the%20He%5Esub%202%5E%20quantum%20halo%20state%20using%20a%20free%20electron%20laser&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Zeller,%20Stefan&rft.date=2016-12-20&rft.volume=113&rft.issue=51&rft.spage=14651&rft.pages=14651-&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/&rft_dat=%3Cproquest%3E4287956741%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1853314655&rft_id=info:pmid/&rfr_iscdi=true