Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM

The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 12...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of nuclear science and technology 2017-02, Vol.54 (2), p.196-204
Hauptverfasser: Sun, Ximing, Dong, Yujie, Zhou, Yangping, Li, Zhengcao, Shi, Lei, Sun, Yuliang, Zhang, Zuoyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 204
container_issue 2
container_start_page 196
container_title Journal of nuclear science and technology
container_volume 54
creator Sun, Ximing
Dong, Yujie
Zhou, Yangping
Li, Zhengcao
Shi, Lei
Sun, Yuliang
Zhang, Zuoyi
description The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 125-500 ml/min at temperature of 400-1200 °C. Experiment results indicate that the oxidation behavior can also be classified into three regimes according to temperature. The regime I at 400-550 °C has lower apparent activation energies of 75.57-138.59 kJ/mol when the gas flow rate is 125-500 ml/min. In the regime II at 600-900 °C, the oxidation rate restricted by the oxygen supply to graphite is almost stable with the increase of temperature. In the regime III above 900 °C, the oxidation rate increases obviously with the increase of temperature. With the increase of inlet gas flow from 125 to 500 ml/min, the apparent activation energy in regime I is increased and the stableness of oxidation rate in regime II is reduced.
doi_str_mv 10.1080/00223131.2016.1233080
format Article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1850377061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1904236049</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-f5179df3c62b8106348d48b24412483d1a1a3ea0b3b2f28e7e6bbecb39647b9e3</originalsourceid><addsrcrecordid>eNp9kUFr3DAQhUVJoZu0P6Eg6CUXbzWSVpZvDctmE0hpCclZyPZoq2BbW8lmk_z6yN3k0kNOwzy-95jhEfIV2BKYZt8Z41yAgCVnoJbAhcjqB7IAraEALvUJWcxMMUOfyGlKD3lVUukF6TfOYTMmGhyNaJvRh4GO2O8x2nGKSO3QUj90ONLw6Fv_7Icd3dlEXRcONDNIs-F6WwAwuot2_8fPUkbtv6gp4eynV3e3xe-fn8lHZ7uEX17nGbm_3Nytr4qbX9vr9cVN0YgSxsKtoKxaJxrFaw1MCalbqWsu5fyNaMGCFWhZLWruuMYSVV1jU4tKybKuUJyR82PuPoa_E6bR9D412HV2wDAlAxWTXCgmq4x--w99CFMc8nUG9IqJsmQKMrU6Uk0MKUV0Zh99b-OTAWbmEsxbCWYuwbyWkH0_jj4_uBB7ewixa81on7oQXbRD45MR70e8AF04jBU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850377061</pqid></control><display><type>article</type><title>Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM</title><source>Alma/SFX Local Collection</source><creator>Sun, Ximing ; Dong, Yujie ; Zhou, Yangping ; Li, Zhengcao ; Shi, Lei ; Sun, Yuliang ; Zhang, Zuoyi</creator><creatorcontrib>Sun, Ximing ; Dong, Yujie ; Zhou, Yangping ; Li, Zhengcao ; Shi, Lei ; Sun, Yuliang ; Zhang, Zuoyi</creatorcontrib><description>The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 125-500 ml/min at temperature of 400-1200 °C. Experiment results indicate that the oxidation behavior can also be classified into three regimes according to temperature. The regime I at 400-550 °C has lower apparent activation energies of 75.57-138.59 kJ/mol when the gas flow rate is 125-500 ml/min. In the regime II at 600-900 °C, the oxidation rate restricted by the oxygen supply to graphite is almost stable with the increase of temperature. In the regime III above 900 °C, the oxidation rate increases obviously with the increase of temperature. With the increase of inlet gas flow from 125 to 500 ml/min, the apparent activation energy in regime I is increased and the stableness of oxidation rate in regime II is reduced.</description><identifier>ISSN: 0022-3131</identifier><identifier>EISSN: 1881-1248</identifier><identifier>DOI: 10.1080/00223131.2016.1233080</identifier><language>eng</language><publisher>Tokyo: Taylor &amp; Francis</publisher><subject>Activation energy ; gas chromatography ; Gas flow ; Graphite ; HTGR ; HTR-PM ; IG-110 ; Inlets ; nuclear graphite ; Nuclear reactions ; Oxidation ; Oxidation rate ; Oxygen</subject><ispartof>Journal of nuclear science and technology, 2017-02, Vol.54 (2), p.196-204</ispartof><rights>2016 Atomic Energy Society of Japan. All rights reserved. 2016</rights><rights>2016 Atomic Energy Society of Japan. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-f5179df3c62b8106348d48b24412483d1a1a3ea0b3b2f28e7e6bbecb39647b9e3</citedby><cites>FETCH-LOGICAL-c371t-f5179df3c62b8106348d48b24412483d1a1a3ea0b3b2f28e7e6bbecb39647b9e3</cites><orcidid>0000-0002-1037-8248</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Ximing</creatorcontrib><creatorcontrib>Dong, Yujie</creatorcontrib><creatorcontrib>Zhou, Yangping</creatorcontrib><creatorcontrib>Li, Zhengcao</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Sun, Yuliang</creatorcontrib><creatorcontrib>Zhang, Zuoyi</creatorcontrib><title>Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM</title><title>Journal of nuclear science and technology</title><description>The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 125-500 ml/min at temperature of 400-1200 °C. Experiment results indicate that the oxidation behavior can also be classified into three regimes according to temperature. The regime I at 400-550 °C has lower apparent activation energies of 75.57-138.59 kJ/mol when the gas flow rate is 125-500 ml/min. In the regime II at 600-900 °C, the oxidation rate restricted by the oxygen supply to graphite is almost stable with the increase of temperature. In the regime III above 900 °C, the oxidation rate increases obviously with the increase of temperature. With the increase of inlet gas flow from 125 to 500 ml/min, the apparent activation energy in regime I is increased and the stableness of oxidation rate in regime II is reduced.</description><subject>Activation energy</subject><subject>gas chromatography</subject><subject>Gas flow</subject><subject>Graphite</subject><subject>HTGR</subject><subject>HTR-PM</subject><subject>IG-110</subject><subject>Inlets</subject><subject>nuclear graphite</subject><subject>Nuclear reactions</subject><subject>Oxidation</subject><subject>Oxidation rate</subject><subject>Oxygen</subject><issn>0022-3131</issn><issn>1881-1248</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kUFr3DAQhUVJoZu0P6Eg6CUXbzWSVpZvDctmE0hpCclZyPZoq2BbW8lmk_z6yN3k0kNOwzy-95jhEfIV2BKYZt8Z41yAgCVnoJbAhcjqB7IAraEALvUJWcxMMUOfyGlKD3lVUukF6TfOYTMmGhyNaJvRh4GO2O8x2nGKSO3QUj90ONLw6Fv_7Icd3dlEXRcONDNIs-F6WwAwuot2_8fPUkbtv6gp4eynV3e3xe-fn8lHZ7uEX17nGbm_3Nytr4qbX9vr9cVN0YgSxsKtoKxaJxrFaw1MCalbqWsu5fyNaMGCFWhZLWruuMYSVV1jU4tKybKuUJyR82PuPoa_E6bR9D412HV2wDAlAxWTXCgmq4x--w99CFMc8nUG9IqJsmQKMrU6Uk0MKUV0Zh99b-OTAWbmEsxbCWYuwbyWkH0_jj4_uBB7ewixa81on7oQXbRD45MR70e8AF04jBU</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Sun, Ximing</creator><creator>Dong, Yujie</creator><creator>Zhou, Yangping</creator><creator>Li, Zhengcao</creator><creator>Shi, Lei</creator><creator>Sun, Yuliang</creator><creator>Zhang, Zuoyi</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1037-8248</orcidid></search><sort><creationdate>20170201</creationdate><title>Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM</title><author>Sun, Ximing ; Dong, Yujie ; Zhou, Yangping ; Li, Zhengcao ; Shi, Lei ; Sun, Yuliang ; Zhang, Zuoyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-f5179df3c62b8106348d48b24412483d1a1a3ea0b3b2f28e7e6bbecb39647b9e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>gas chromatography</topic><topic>Gas flow</topic><topic>Graphite</topic><topic>HTGR</topic><topic>HTR-PM</topic><topic>IG-110</topic><topic>Inlets</topic><topic>nuclear graphite</topic><topic>Nuclear reactions</topic><topic>Oxidation</topic><topic>Oxidation rate</topic><topic>Oxygen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Ximing</creatorcontrib><creatorcontrib>Dong, Yujie</creatorcontrib><creatorcontrib>Zhou, Yangping</creatorcontrib><creatorcontrib>Li, Zhengcao</creatorcontrib><creatorcontrib>Shi, Lei</creatorcontrib><creatorcontrib>Sun, Yuliang</creatorcontrib><creatorcontrib>Zhang, Zuoyi</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of nuclear science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Ximing</au><au>Dong, Yujie</au><au>Zhou, Yangping</au><au>Li, Zhengcao</au><au>Shi, Lei</au><au>Sun, Yuliang</au><au>Zhang, Zuoyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM</atitle><jtitle>Journal of nuclear science and technology</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>54</volume><issue>2</issue><spage>196</spage><epage>204</epage><pages>196-204</pages><issn>0022-3131</issn><eissn>1881-1248</eissn><abstract>The oxidation behavior of a selected nuclear graphite (IG-110) used in Pebble-bed Module High Temperature gas-cooled Reactor was investigated under the condition of air ingress accident. The oblate rectangular specimen was oxidized by oxidant gas with oxygen mole fraction of 20% and flow rates of 125-500 ml/min at temperature of 400-1200 °C. Experiment results indicate that the oxidation behavior can also be classified into three regimes according to temperature. The regime I at 400-550 °C has lower apparent activation energies of 75.57-138.59 kJ/mol when the gas flow rate is 125-500 ml/min. In the regime II at 600-900 °C, the oxidation rate restricted by the oxygen supply to graphite is almost stable with the increase of temperature. In the regime III above 900 °C, the oxidation rate increases obviously with the increase of temperature. With the increase of inlet gas flow from 125 to 500 ml/min, the apparent activation energy in regime I is increased and the stableness of oxidation rate in regime II is reduced.</abstract><cop>Tokyo</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/00223131.2016.1233080</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-1037-8248</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-3131
ispartof Journal of nuclear science and technology, 2017-02, Vol.54 (2), p.196-204
issn 0022-3131
1881-1248
language eng
recordid cdi_proquest_journals_1850377061
source Alma/SFX Local Collection
subjects Activation energy
gas chromatography
Gas flow
Graphite
HTGR
HTR-PM
IG-110
Inlets
nuclear graphite
Nuclear reactions
Oxidation
Oxidation rate
Oxygen
title Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20reaction%20temperature%20and%20inlet%20oxidizing%20gas%20flow%20rate%20on%20IG-110%20graphite%20oxidation%20used%20in%20HTR-PM&rft.jtitle=Journal%20of%20nuclear%20science%20and%20technology&rft.au=Sun,%20Ximing&rft.date=2017-02-01&rft.volume=54&rft.issue=2&rft.spage=196&rft.epage=204&rft.pages=196-204&rft.issn=0022-3131&rft.eissn=1881-1248&rft_id=info:doi/10.1080/00223131.2016.1233080&rft_dat=%3Cproquest_infor%3E1904236049%3C/proquest_infor%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850377061&rft_id=info:pmid/&rfr_iscdi=true