Stronger Wireless Signals Appear More Poisson

Keeler et al. recently derived approximation and convergence results, which imply that the point process formed from the signal strengths received by an observer in a wireless network under a general statistical propagation model can be modeled by an inhomogeneous Poisson point process on the positi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE wireless communications letters 2016-12, Vol.5 (6), p.572-575
Hauptverfasser: Keeler, Paul, Ross, Nathan, Aihua Xia, Blaszczyszyn, Bartlomiejd
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 575
container_issue 6
container_start_page 572
container_title IEEE wireless communications letters
container_volume 5
creator Keeler, Paul
Ross, Nathan
Aihua Xia
Blaszczyszyn, Bartlomiejd
description Keeler et al. recently derived approximation and convergence results, which imply that the point process formed from the signal strengths received by an observer in a wireless network under a general statistical propagation model can be modeled by an inhomogeneous Poisson point process on the positive real line. The basic requirement for the results to apply is that there must be a large number of transmitters with different locations and random propagation effects. The aim of this letter is to apply some of the main results in a less general but more easily applicable form to illustrate how the results can be applied in practice. New results are derived that show, it is the strongest signals, after being weakened by random propagation effects, that behave like a Poisson process, which supports recent experimental work.
doi_str_mv 10.1109/LWC.2016.2601913
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1850237928</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7551189</ieee_id><sourcerecordid>1850237928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-74f57df88be223e94b948eeb7b59fabf8c1d49d043b8f71826925a6d920ef54a3</originalsourceid><addsrcrecordid>eNo9kEFLAzEQhYMoWGrvgpcFTx62ZpLNJjmWolZYUajSY8h2J3VLbdakCv57s2zpXGaY-eYN8wi5BjoFoPq-Ws2njEI5ZSUFDfyMjBiULGe8EOenmstLMolxS1MkjoEakXx5CH6_wZCt2oA7jDFbtpu93cVs1nVoQ_biA2Zvvo3R76_IhUsjnBzzmHw8PrzPF3n1-vQ8n1X5mjNxyGXhhGycUjUyxlEXtS4UYi1roZ2tnVpDU-iGFrxWToJipWbClo1mFJ0oLB-Tu0H30-5MF9ovG_6Mt61ZzCrT9yhwDkrLX0js7cB2wX__YDyYrf8J_QcGlKCMS81UouhArYOPMaA7yQI1vYcmeWh6D83Rw7RyM6y0iHjCpRCQLvN_SZBqLA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1850237928</pqid></control><display><type>article</type><title>Stronger Wireless Signals Appear More Poisson</title><source>IEEE Electronic Library (IEL)</source><creator>Keeler, Paul ; Ross, Nathan ; Aihua Xia ; Blaszczyszyn, Bartlomiejd</creator><creatorcontrib>Keeler, Paul ; Ross, Nathan ; Aihua Xia ; Blaszczyszyn, Bartlomiejd</creatorcontrib><description>Keeler et al. recently derived approximation and convergence results, which imply that the point process formed from the signal strengths received by an observer in a wireless network under a general statistical propagation model can be modeled by an inhomogeneous Poisson point process on the positive real line. The basic requirement for the results to apply is that there must be a large number of transmitters with different locations and random propagation effects. The aim of this letter is to apply some of the main results in a less general but more easily applicable form to illustrate how the results can be applied in practice. New results are derived that show, it is the strongest signals, after being weakened by random propagation effects, that behave like a Poisson process, which supports recent experimental work.</description><identifier>ISSN: 2162-2337</identifier><identifier>EISSN: 2162-2345</identifier><identifier>DOI: 10.1109/LWC.2016.2601913</identifier><identifier>CODEN: IWCLAF</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer Science ; Convergence ; Density measurement ; error bounds ; Mathematical model ; Mathematics ; Networking and Internet Architecture ; Observers ; Poisson approximation ; Poisson density functions ; Power measurement ; Probability ; Propagation ; propagation model ; Signal processing ; Stochastic geometry ; Transmitters ; Wireless networks</subject><ispartof>IEEE wireless communications letters, 2016-12, Vol.5 (6), p.572-575</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-74f57df88be223e94b948eeb7b59fabf8c1d49d043b8f71826925a6d920ef54a3</citedby><cites>FETCH-LOGICAL-c325t-74f57df88be223e94b948eeb7b59fabf8c1d49d043b8f71826925a6d920ef54a3</cites><orcidid>0000-0002-2063-1075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7551189$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,777,781,793,882,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7551189$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://inria.hal.science/hal-01331897$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Keeler, Paul</creatorcontrib><creatorcontrib>Ross, Nathan</creatorcontrib><creatorcontrib>Aihua Xia</creatorcontrib><creatorcontrib>Blaszczyszyn, Bartlomiejd</creatorcontrib><title>Stronger Wireless Signals Appear More Poisson</title><title>IEEE wireless communications letters</title><addtitle>LWC</addtitle><description>Keeler et al. recently derived approximation and convergence results, which imply that the point process formed from the signal strengths received by an observer in a wireless network under a general statistical propagation model can be modeled by an inhomogeneous Poisson point process on the positive real line. The basic requirement for the results to apply is that there must be a large number of transmitters with different locations and random propagation effects. The aim of this letter is to apply some of the main results in a less general but more easily applicable form to illustrate how the results can be applied in practice. New results are derived that show, it is the strongest signals, after being weakened by random propagation effects, that behave like a Poisson process, which supports recent experimental work.</description><subject>Computer Science</subject><subject>Convergence</subject><subject>Density measurement</subject><subject>error bounds</subject><subject>Mathematical model</subject><subject>Mathematics</subject><subject>Networking and Internet Architecture</subject><subject>Observers</subject><subject>Poisson approximation</subject><subject>Poisson density functions</subject><subject>Power measurement</subject><subject>Probability</subject><subject>Propagation</subject><subject>propagation model</subject><subject>Signal processing</subject><subject>Stochastic geometry</subject><subject>Transmitters</subject><subject>Wireless networks</subject><issn>2162-2337</issn><issn>2162-2345</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLAzEQhYMoWGrvgpcFTx62ZpLNJjmWolZYUajSY8h2J3VLbdakCv57s2zpXGaY-eYN8wi5BjoFoPq-Ws2njEI5ZSUFDfyMjBiULGe8EOenmstLMolxS1MkjoEakXx5CH6_wZCt2oA7jDFbtpu93cVs1nVoQ_biA2Zvvo3R76_IhUsjnBzzmHw8PrzPF3n1-vQ8n1X5mjNxyGXhhGycUjUyxlEXtS4UYi1roZ2tnVpDU-iGFrxWToJipWbClo1mFJ0oLB-Tu0H30-5MF9ovG_6Mt61ZzCrT9yhwDkrLX0js7cB2wX__YDyYrf8J_QcGlKCMS81UouhArYOPMaA7yQI1vYcmeWh6D83Rw7RyM6y0iHjCpRCQLvN_SZBqLA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Keeler, Paul</creator><creator>Ross, Nathan</creator><creator>Aihua Xia</creator><creator>Blaszczyszyn, Bartlomiejd</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><general>IEEE comsoc</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-2063-1075</orcidid></search><sort><creationdate>20161201</creationdate><title>Stronger Wireless Signals Appear More Poisson</title><author>Keeler, Paul ; Ross, Nathan ; Aihua Xia ; Blaszczyszyn, Bartlomiejd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-74f57df88be223e94b948eeb7b59fabf8c1d49d043b8f71826925a6d920ef54a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Convergence</topic><topic>Density measurement</topic><topic>error bounds</topic><topic>Mathematical model</topic><topic>Mathematics</topic><topic>Networking and Internet Architecture</topic><topic>Observers</topic><topic>Poisson approximation</topic><topic>Poisson density functions</topic><topic>Power measurement</topic><topic>Probability</topic><topic>Propagation</topic><topic>propagation model</topic><topic>Signal processing</topic><topic>Stochastic geometry</topic><topic>Transmitters</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Keeler, Paul</creatorcontrib><creatorcontrib>Ross, Nathan</creatorcontrib><creatorcontrib>Aihua Xia</creatorcontrib><creatorcontrib>Blaszczyszyn, Bartlomiejd</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><jtitle>IEEE wireless communications letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Keeler, Paul</au><au>Ross, Nathan</au><au>Aihua Xia</au><au>Blaszczyszyn, Bartlomiejd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stronger Wireless Signals Appear More Poisson</atitle><jtitle>IEEE wireless communications letters</jtitle><stitle>LWC</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>5</volume><issue>6</issue><spage>572</spage><epage>575</epage><pages>572-575</pages><issn>2162-2337</issn><eissn>2162-2345</eissn><coden>IWCLAF</coden><abstract>Keeler et al. recently derived approximation and convergence results, which imply that the point process formed from the signal strengths received by an observer in a wireless network under a general statistical propagation model can be modeled by an inhomogeneous Poisson point process on the positive real line. The basic requirement for the results to apply is that there must be a large number of transmitters with different locations and random propagation effects. The aim of this letter is to apply some of the main results in a less general but more easily applicable form to illustrate how the results can be applied in practice. New results are derived that show, it is the strongest signals, after being weakened by random propagation effects, that behave like a Poisson process, which supports recent experimental work.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LWC.2016.2601913</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-2063-1075</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-2337
ispartof IEEE wireless communications letters, 2016-12, Vol.5 (6), p.572-575
issn 2162-2337
2162-2345
language eng
recordid cdi_proquest_journals_1850237928
source IEEE Electronic Library (IEL)
subjects Computer Science
Convergence
Density measurement
error bounds
Mathematical model
Mathematics
Networking and Internet Architecture
Observers
Poisson approximation
Poisson density functions
Power measurement
Probability
Propagation
propagation model
Signal processing
Stochastic geometry
Transmitters
Wireless networks
title Stronger Wireless Signals Appear More Poisson
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A42%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stronger%20Wireless%20Signals%20Appear%20More%20Poisson&rft.jtitle=IEEE%20wireless%20communications%20letters&rft.au=Keeler,%20Paul&rft.date=2016-12-01&rft.volume=5&rft.issue=6&rft.spage=572&rft.epage=575&rft.pages=572-575&rft.issn=2162-2337&rft.eissn=2162-2345&rft.coden=IWCLAF&rft_id=info:doi/10.1109/LWC.2016.2601913&rft_dat=%3Cproquest_RIE%3E1850237928%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1850237928&rft_id=info:pmid/&rft_ieee_id=7551189&rfr_iscdi=true