Greenhouse trace gases in deadwood

Deadwood, long recognized as playing an important role in storing carbon and releasing it as CO₂ in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. Across three Northeastern and Central US forests, mean methane (CH₄) concen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biogeochemistry 2016-11, Vol.130 (3), p.215-226
Hauptverfasser: Covey, K. R., de Mesquita, C. P. Bueno, Oberle, B., Maynard, D. S., Bettigole, C., Crowther, T. W., Duguid, M. C., Steven, B., Zanne, A. E., Lapin, M., Ashton, M. S., Oliver, C. D., Lee, X., Bradford, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue 3
container_start_page 215
container_title Biogeochemistry
container_volume 130
creator Covey, K. R.
de Mesquita, C. P. Bueno
Oberle, B.
Maynard, D. S.
Bettigole, C.
Crowther, T. W.
Duguid, M. C.
Steven, B.
Zanne, A. E.
Lapin, M.
Ashton, M. S.
Oliver, C. D.
Lee, X.
Bradford, M. A.
description Deadwood, long recognized as playing an important role in storing carbon and releasing it as CO₂ in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. Across three Northeastern and Central US forests, mean methane (CH₄) concentrations in deadwood were 23 times atmospheric levels (43.0 µL L⁻¹ ± 12.3; mean ± SE), indicating a lower bound, mean radial wood surface area flux of ~ 6 × 10⁻⁴ µmol CH₄ m⁻² s⁻¹. Site, decay class, log diameter, and species were all highly significant predictors of CH₄ abundance in deadwood, and diameter and decay class interacted as important controls limiting CH₄ concentrations in the smallest and most decayed logs. Nitrous oxide (N₂O) concentrations were negatively correlated with CH₄ (r² = –0.20, p < 0.001) and on average ~ 25 % lower than ambient (276.9 nL L⁻¹ ± 2.9; mean ± SE), indicating net consumption of nitrous oxide. Oxygen (O₂) concentrations were uniformly near anaerobic (355.8 µL L⁻¹ ± 1.2; mean ± SE), and CO₂ was elevated from atmospheric (9336.9 µL L⁻¹ ± 600.6; mean ± SE). Most notably, our observations that CH₄ concentrations were highest in the least decayed wood, may suggest that methanogenesis is not fuelled by structural wood decomposition but rather by consumption of more labile nonstructural carbohydrates.
doi_str_mv 10.1007/s10533-016-0253-1
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1849641375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>48720705</jstor_id><sourcerecordid>48720705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-43c325628572dba4db4d5841578ae3f224b9ec96ff5bed505326a2f0867642913</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsfwIOw6Dk6-Z89StEqFLwoeAvZzWxt0U1Ntojfvikr4snTHOb33pt5hJwzuGYA5iYzUEJQYJoCV4KyAzJhygiqmHo9JJOysJQrLY7JSc5rAKgNiAm5nCfE_i1uM1ZD8i1WS58xV6u-CujDV4zhlBx1_j3j2c-ckpf7u-fZA108zR9ntwvaCmEHKkUrSgC3yvDQeBkaGZSV5QjrUXScy6bGttZdpxoMqpzLtecdWG205DUTU3I1-m5S_NxiHtw6blNfIh2zstaSCaMKxUaqTTHnhJ3bpNWHT9-OgdtX4cYqXPnY7atwe2c-anJh-yWmP87_iC5G0ToPMf2mSGs4mALvACSKZ9E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1849641375</pqid></control><display><type>article</type><title>Greenhouse trace gases in deadwood</title><source>SpringerLink Journals (MCLS)</source><source>JSTOR</source><creator>Covey, K. R. ; de Mesquita, C. P. Bueno ; Oberle, B. ; Maynard, D. S. ; Bettigole, C. ; Crowther, T. W. ; Duguid, M. C. ; Steven, B. ; Zanne, A. E. ; Lapin, M. ; Ashton, M. S. ; Oliver, C. D. ; Lee, X. ; Bradford, M. A.</creator><creatorcontrib>Covey, K. R. ; de Mesquita, C. P. Bueno ; Oberle, B. ; Maynard, D. S. ; Bettigole, C. ; Crowther, T. W. ; Duguid, M. C. ; Steven, B. ; Zanne, A. E. ; Lapin, M. ; Ashton, M. S. ; Oliver, C. D. ; Lee, X. ; Bradford, M. A.</creatorcontrib><description>Deadwood, long recognized as playing an important role in storing carbon and releasing it as CO₂ in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. Across three Northeastern and Central US forests, mean methane (CH₄) concentrations in deadwood were 23 times atmospheric levels (43.0 µL L⁻¹ ± 12.3; mean ± SE), indicating a lower bound, mean radial wood surface area flux of ~ 6 × 10⁻⁴ µmol CH₄ m⁻² s⁻¹. Site, decay class, log diameter, and species were all highly significant predictors of CH₄ abundance in deadwood, and diameter and decay class interacted as important controls limiting CH₄ concentrations in the smallest and most decayed logs. Nitrous oxide (N₂O) concentrations were negatively correlated with CH₄ (r² = –0.20, p &lt; 0.001) and on average ~ 25 % lower than ambient (276.9 nL L⁻¹ ± 2.9; mean ± SE), indicating net consumption of nitrous oxide. Oxygen (O₂) concentrations were uniformly near anaerobic (355.8 µL L⁻¹ ± 1.2; mean ± SE), and CO₂ was elevated from atmospheric (9336.9 µL L⁻¹ ± 600.6; mean ± SE). Most notably, our observations that CH₄ concentrations were highest in the least decayed wood, may suggest that methanogenesis is not fuelled by structural wood decomposition but rather by consumption of more labile nonstructural carbohydrates.</description><identifier>ISSN: 0168-2563</identifier><identifier>EISSN: 1573-515X</identifier><identifier>DOI: 10.1007/s10533-016-0253-1</identifier><language>eng</language><publisher>Cham: Springer Science + Business Media</publisher><subject>Biogeosciences ; Carbohydrates ; Carbon dioxide ; Dead wood ; Decay ; Earth and Environmental Science ; Earth Sciences ; Ecosystems ; Environmental Chemistry ; Forest ecosystems ; Greenhouse gases ; Greenhouses ; Life Sciences ; Methane ; Methanogenesis ; Nitrous oxide ; ORIGINAL PAPERS ; Trace elements ; Wood</subject><ispartof>Biogeochemistry, 2016-11, Vol.130 (3), p.215-226</ispartof><rights>Springer International Publishing Switzerland 2016</rights><rights>Biogeochemistry is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-43c325628572dba4db4d5841578ae3f224b9ec96ff5bed505326a2f0867642913</citedby><cites>FETCH-LOGICAL-c338t-43c325628572dba4db4d5841578ae3f224b9ec96ff5bed505326a2f0867642913</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/48720705$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/48720705$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,27924,27925,41488,42557,51319,58017,58250</link.rule.ids></links><search><creatorcontrib>Covey, K. R.</creatorcontrib><creatorcontrib>de Mesquita, C. P. Bueno</creatorcontrib><creatorcontrib>Oberle, B.</creatorcontrib><creatorcontrib>Maynard, D. S.</creatorcontrib><creatorcontrib>Bettigole, C.</creatorcontrib><creatorcontrib>Crowther, T. W.</creatorcontrib><creatorcontrib>Duguid, M. C.</creatorcontrib><creatorcontrib>Steven, B.</creatorcontrib><creatorcontrib>Zanne, A. E.</creatorcontrib><creatorcontrib>Lapin, M.</creatorcontrib><creatorcontrib>Ashton, M. S.</creatorcontrib><creatorcontrib>Oliver, C. D.</creatorcontrib><creatorcontrib>Lee, X.</creatorcontrib><creatorcontrib>Bradford, M. A.</creatorcontrib><title>Greenhouse trace gases in deadwood</title><title>Biogeochemistry</title><addtitle>Biogeochemistry</addtitle><description>Deadwood, long recognized as playing an important role in storing carbon and releasing it as CO₂ in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. Across three Northeastern and Central US forests, mean methane (CH₄) concentrations in deadwood were 23 times atmospheric levels (43.0 µL L⁻¹ ± 12.3; mean ± SE), indicating a lower bound, mean radial wood surface area flux of ~ 6 × 10⁻⁴ µmol CH₄ m⁻² s⁻¹. Site, decay class, log diameter, and species were all highly significant predictors of CH₄ abundance in deadwood, and diameter and decay class interacted as important controls limiting CH₄ concentrations in the smallest and most decayed logs. Nitrous oxide (N₂O) concentrations were negatively correlated with CH₄ (r² = –0.20, p &lt; 0.001) and on average ~ 25 % lower than ambient (276.9 nL L⁻¹ ± 2.9; mean ± SE), indicating net consumption of nitrous oxide. Oxygen (O₂) concentrations were uniformly near anaerobic (355.8 µL L⁻¹ ± 1.2; mean ± SE), and CO₂ was elevated from atmospheric (9336.9 µL L⁻¹ ± 600.6; mean ± SE). Most notably, our observations that CH₄ concentrations were highest in the least decayed wood, may suggest that methanogenesis is not fuelled by structural wood decomposition but rather by consumption of more labile nonstructural carbohydrates.</description><subject>Biogeosciences</subject><subject>Carbohydrates</subject><subject>Carbon dioxide</subject><subject>Dead wood</subject><subject>Decay</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Ecosystems</subject><subject>Environmental Chemistry</subject><subject>Forest ecosystems</subject><subject>Greenhouse gases</subject><subject>Greenhouses</subject><subject>Life Sciences</subject><subject>Methane</subject><subject>Methanogenesis</subject><subject>Nitrous oxide</subject><subject>ORIGINAL PAPERS</subject><subject>Trace elements</subject><subject>Wood</subject><issn>0168-2563</issn><issn>1573-515X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE9LAzEQxYMoWKsfwIOw6Dk6-Z89StEqFLwoeAvZzWxt0U1Ntojfvikr4snTHOb33pt5hJwzuGYA5iYzUEJQYJoCV4KyAzJhygiqmHo9JJOysJQrLY7JSc5rAKgNiAm5nCfE_i1uM1ZD8i1WS58xV6u-CujDV4zhlBx1_j3j2c-ckpf7u-fZA108zR9ntwvaCmEHKkUrSgC3yvDQeBkaGZSV5QjrUXScy6bGttZdpxoMqpzLtecdWG205DUTU3I1-m5S_NxiHtw6blNfIh2zstaSCaMKxUaqTTHnhJ3bpNWHT9-OgdtX4cYqXPnY7atwe2c-anJh-yWmP87_iC5G0ToPMf2mSGs4mALvACSKZ9E</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Covey, K. R.</creator><creator>de Mesquita, C. P. Bueno</creator><creator>Oberle, B.</creator><creator>Maynard, D. S.</creator><creator>Bettigole, C.</creator><creator>Crowther, T. W.</creator><creator>Duguid, M. C.</creator><creator>Steven, B.</creator><creator>Zanne, A. E.</creator><creator>Lapin, M.</creator><creator>Ashton, M. S.</creator><creator>Oliver, C. D.</creator><creator>Lee, X.</creator><creator>Bradford, M. A.</creator><general>Springer Science + Business Media</general><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>LK8</scope><scope>M0S</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20161101</creationdate><title>Greenhouse trace gases in deadwood</title><author>Covey, K. R. ; de Mesquita, C. P. Bueno ; Oberle, B. ; Maynard, D. S. ; Bettigole, C. ; Crowther, T. W. ; Duguid, M. C. ; Steven, B. ; Zanne, A. E. ; Lapin, M. ; Ashton, M. S. ; Oliver, C. D. ; Lee, X. ; Bradford, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-43c325628572dba4db4d5841578ae3f224b9ec96ff5bed505326a2f0867642913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biogeosciences</topic><topic>Carbohydrates</topic><topic>Carbon dioxide</topic><topic>Dead wood</topic><topic>Decay</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Ecosystems</topic><topic>Environmental Chemistry</topic><topic>Forest ecosystems</topic><topic>Greenhouse gases</topic><topic>Greenhouses</topic><topic>Life Sciences</topic><topic>Methane</topic><topic>Methanogenesis</topic><topic>Nitrous oxide</topic><topic>ORIGINAL PAPERS</topic><topic>Trace elements</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Covey, K. R.</creatorcontrib><creatorcontrib>de Mesquita, C. P. Bueno</creatorcontrib><creatorcontrib>Oberle, B.</creatorcontrib><creatorcontrib>Maynard, D. S.</creatorcontrib><creatorcontrib>Bettigole, C.</creatorcontrib><creatorcontrib>Crowther, T. W.</creatorcontrib><creatorcontrib>Duguid, M. C.</creatorcontrib><creatorcontrib>Steven, B.</creatorcontrib><creatorcontrib>Zanne, A. E.</creatorcontrib><creatorcontrib>Lapin, M.</creatorcontrib><creatorcontrib>Ashton, M. S.</creatorcontrib><creatorcontrib>Oliver, C. D.</creatorcontrib><creatorcontrib>Lee, X.</creatorcontrib><creatorcontrib>Bradford, M. A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Science Database (ProQuest)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Biogeochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Covey, K. R.</au><au>de Mesquita, C. P. Bueno</au><au>Oberle, B.</au><au>Maynard, D. S.</au><au>Bettigole, C.</au><au>Crowther, T. W.</au><au>Duguid, M. C.</au><au>Steven, B.</au><au>Zanne, A. E.</au><au>Lapin, M.</au><au>Ashton, M. S.</au><au>Oliver, C. D.</au><au>Lee, X.</au><au>Bradford, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Greenhouse trace gases in deadwood</atitle><jtitle>Biogeochemistry</jtitle><stitle>Biogeochemistry</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>130</volume><issue>3</issue><spage>215</spage><epage>226</epage><pages>215-226</pages><issn>0168-2563</issn><eissn>1573-515X</eissn><abstract>Deadwood, long recognized as playing an important role in storing carbon and releasing it as CO₂ in forest ecosystems, is more recently drawing attention for its potential role in the cycling of other greenhouse trace gases. Across three Northeastern and Central US forests, mean methane (CH₄) concentrations in deadwood were 23 times atmospheric levels (43.0 µL L⁻¹ ± 12.3; mean ± SE), indicating a lower bound, mean radial wood surface area flux of ~ 6 × 10⁻⁴ µmol CH₄ m⁻² s⁻¹. Site, decay class, log diameter, and species were all highly significant predictors of CH₄ abundance in deadwood, and diameter and decay class interacted as important controls limiting CH₄ concentrations in the smallest and most decayed logs. Nitrous oxide (N₂O) concentrations were negatively correlated with CH₄ (r² = –0.20, p &lt; 0.001) and on average ~ 25 % lower than ambient (276.9 nL L⁻¹ ± 2.9; mean ± SE), indicating net consumption of nitrous oxide. Oxygen (O₂) concentrations were uniformly near anaerobic (355.8 µL L⁻¹ ± 1.2; mean ± SE), and CO₂ was elevated from atmospheric (9336.9 µL L⁻¹ ± 600.6; mean ± SE). Most notably, our observations that CH₄ concentrations were highest in the least decayed wood, may suggest that methanogenesis is not fuelled by structural wood decomposition but rather by consumption of more labile nonstructural carbohydrates.</abstract><cop>Cham</cop><pub>Springer Science + Business Media</pub><doi>10.1007/s10533-016-0253-1</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-2563
ispartof Biogeochemistry, 2016-11, Vol.130 (3), p.215-226
issn 0168-2563
1573-515X
language eng
recordid cdi_proquest_journals_1849641375
source SpringerLink Journals (MCLS); JSTOR
subjects Biogeosciences
Carbohydrates
Carbon dioxide
Dead wood
Decay
Earth and Environmental Science
Earth Sciences
Ecosystems
Environmental Chemistry
Forest ecosystems
Greenhouse gases
Greenhouses
Life Sciences
Methane
Methanogenesis
Nitrous oxide
ORIGINAL PAPERS
Trace elements
Wood
title Greenhouse trace gases in deadwood
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Greenhouse%20trace%20gases%20in%20deadwood&rft.jtitle=Biogeochemistry&rft.au=Covey,%20K.%20R.&rft.date=2016-11-01&rft.volume=130&rft.issue=3&rft.spage=215&rft.epage=226&rft.pages=215-226&rft.issn=0168-2563&rft.eissn=1573-515X&rft_id=info:doi/10.1007/s10533-016-0253-1&rft_dat=%3Cjstor_proqu%3E48720705%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1849641375&rft_id=info:pmid/&rft_jstor_id=48720705&rfr_iscdi=true