Comparison of dark energy models after Planck 2015
We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave backgro...
Gespeichert in:
Veröffentlicht in: | The European physical journal. C, Particles and fields Particles and fields, 2016-11, Vol.76 (11), p.1, Article 588 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | 1 |
container_title | The European physical journal. C, Particles and fields |
container_volume | 76 |
creator | Xu, Yue-Yao Zhang, Xin |
description | We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant
w
model, and the
α
dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations. |
doi_str_mv | 10.1140/epjc/s10052-016-4446-5 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1846991070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A508140611</galeid><sourcerecordid>A508140611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUQIMoOKd_QQo--dDtpk3a5nEMPwYDxfkesvSmdGubmnTg_r0ZFdEXyUPC5ZwkHEJuKcwoZTDHfqfnngLwJAaaxYyxLOZnZEJZyuIsjM9_zoxdkivvdwCQMCgmJFnatleu9raLrIlK5fYRduiqY9TaEhsfKTOgi14b1el9lADl1-TCqMbjzfc-JZvHh_flc7x-eVotF-tY8yQZYoFqm6LGbZ6AKRRwkfJECEMZ1ZpnIgUlSi0YxVzlBQ1_S42ggEWpU6XSKbkbb-2d_TigH-TOHlwXHpS0YJkIaA6Bmo1UpRqUdWfs4JQOq8S21rZDU4f5gkMRSmWUBuH-jxCYAT-HSh28l6vN2182G1ntrPcOjexd3Sp3lBTkKb08pZdjehnSy1N6yYOYj6IPQleh-_X3_80vwcOGfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846991070</pqid></control><display><type>article</type><title>Comparison of dark energy models after Planck 2015</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA/Free Journals</source><creator>Xu, Yue-Yao ; Zhang, Xin</creator><creatorcontrib>Xu, Yue-Yao ; Zhang, Xin</creatorcontrib><description>We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant
w
model, and the
α
dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-016-4446-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Comparative analysis ; Cosmic background radiation ; Dark energy ; Elementary Particles ; Hadrons ; Heavy Ions ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2016-11, Vol.76 (11), p.1, Article 588</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</citedby><cites>FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-016-4446-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjc/s10052-016-4446-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,27933,27934,41129,41497,42198,42566,51328,51585</link.rule.ids></links><search><creatorcontrib>Xu, Yue-Yao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Comparison of dark energy models after Planck 2015</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant
w
model, and the
α
dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Comparative analysis</subject><subject>Cosmic background radiation</subject><subject>Dark energy</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>String Theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LwzAUQIMoOKd_QQo--dDtpk3a5nEMPwYDxfkesvSmdGubmnTg_r0ZFdEXyUPC5ZwkHEJuKcwoZTDHfqfnngLwJAaaxYyxLOZnZEJZyuIsjM9_zoxdkivvdwCQMCgmJFnatleu9raLrIlK5fYRduiqY9TaEhsfKTOgi14b1el9lADl1-TCqMbjzfc-JZvHh_flc7x-eVotF-tY8yQZYoFqm6LGbZ6AKRRwkfJECEMZ1ZpnIgUlSi0YxVzlBQ1_S42ggEWpU6XSKbkbb-2d_TigH-TOHlwXHpS0YJkIaA6Bmo1UpRqUdWfs4JQOq8S21rZDU4f5gkMRSmWUBuH-jxCYAT-HSh28l6vN2182G1ntrPcOjexd3Sp3lBTkKb08pZdjehnSy1N6yYOYj6IPQleh-_X3_80vwcOGfw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Xu, Yue-Yao</creator><creator>Zhang, Xin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161101</creationdate><title>Comparison of dark energy models after Planck 2015</title><author>Xu, Yue-Yao ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Comparative analysis</topic><topic>Cosmic background radiation</topic><topic>Dark energy</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yue-Yao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yue-Yao</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of dark energy models after Planck 2015</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>76</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>588</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant
w
model, and the
α
dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-016-4446-5</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-6044 |
ispartof | The European physical journal. C, Particles and fields, 2016-11, Vol.76 (11), p.1, Article 588 |
issn | 1434-6044 1434-6052 |
language | eng |
recordid | cdi_proquest_journals_1846991070 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; Springer Nature OA/Free Journals |
subjects | Astronomy Astrophysics and Cosmology Comparative analysis Cosmic background radiation Dark energy Elementary Particles Hadrons Heavy Ions Measurement Science and Instrumentation Nuclear Energy Nuclear Physics Physics Physics and Astronomy Quantum Field Theories Quantum Field Theory Regular Article - Theoretical Physics String Theory |
title | Comparison of dark energy models after Planck 2015 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-28T22%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20dark%20energy%20models%20after%20Planck%202015&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Xu,%20Yue-Yao&rft.date=2016-11-01&rft.volume=76&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=588&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-016-4446-5&rft_dat=%3Cgale_proqu%3EA508140611%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846991070&rft_id=info:pmid/&rft_galeid=A508140611&rfr_iscdi=true |