Comparison of dark energy models after Planck 2015

We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave backgro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. C, Particles and fields Particles and fields, 2016-11, Vol.76 (11), p.1, Article 588
Hauptverfasser: Xu, Yue-Yao, Zhang, Xin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page 1
container_title The European physical journal. C, Particles and fields
container_volume 76
creator Xu, Yue-Yao
Zhang, Xin
description We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.
doi_str_mv 10.1140/epjc/s10052-016-4446-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1846991070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A508140611</galeid><sourcerecordid>A508140611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</originalsourceid><addsrcrecordid>eNp9kF1LwzAUQIMoOKd_QQo--dDtpk3a5nEMPwYDxfkesvSmdGubmnTg_r0ZFdEXyUPC5ZwkHEJuKcwoZTDHfqfnngLwJAaaxYyxLOZnZEJZyuIsjM9_zoxdkivvdwCQMCgmJFnatleu9raLrIlK5fYRduiqY9TaEhsfKTOgi14b1el9lADl1-TCqMbjzfc-JZvHh_flc7x-eVotF-tY8yQZYoFqm6LGbZ6AKRRwkfJECEMZ1ZpnIgUlSi0YxVzlBQ1_S42ggEWpU6XSKbkbb-2d_TigH-TOHlwXHpS0YJkIaA6Bmo1UpRqUdWfs4JQOq8S21rZDU4f5gkMRSmWUBuH-jxCYAT-HSh28l6vN2182G1ntrPcOjexd3Sp3lBTkKb08pZdjehnSy1N6yYOYj6IPQleh-_X3_80vwcOGfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1846991070</pqid></control><display><type>article</type><title>Comparison of dark energy models after Planck 2015</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerNature Journals</source><source>Springer Nature OA/Free Journals</source><creator>Xu, Yue-Yao ; Zhang, Xin</creator><creatorcontrib>Xu, Yue-Yao ; Zhang, Xin</creatorcontrib><description>We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.</description><identifier>ISSN: 1434-6044</identifier><identifier>EISSN: 1434-6052</identifier><identifier>DOI: 10.1140/epjc/s10052-016-4446-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Astronomy ; Astrophysics and Cosmology ; Comparative analysis ; Cosmic background radiation ; Dark energy ; Elementary Particles ; Hadrons ; Heavy Ions ; Measurement Science and Instrumentation ; Nuclear Energy ; Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Field Theories ; Quantum Field Theory ; Regular Article - Theoretical Physics ; String Theory</subject><ispartof>The European physical journal. C, Particles and fields, 2016-11, Vol.76 (11), p.1, Article 588</ispartof><rights>The Author(s) 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>The European Physical Journal C is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</citedby><cites>FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjc/s10052-016-4446-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://doi.org/10.1140/epjc/s10052-016-4446-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>315,782,786,866,27933,27934,41129,41497,42198,42566,51328,51585</link.rule.ids></links><search><creatorcontrib>Xu, Yue-Yao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><title>Comparison of dark energy models after Planck 2015</title><title>The European physical journal. C, Particles and fields</title><addtitle>Eur. Phys. J. C</addtitle><description>We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.</description><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Comparative analysis</subject><subject>Cosmic background radiation</subject><subject>Dark energy</subject><subject>Elementary Particles</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Measurement Science and Instrumentation</subject><subject>Nuclear Energy</subject><subject>Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Field Theories</subject><subject>Quantum Field Theory</subject><subject>Regular Article - Theoretical Physics</subject><subject>String Theory</subject><issn>1434-6044</issn><issn>1434-6052</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kF1LwzAUQIMoOKd_QQo--dDtpk3a5nEMPwYDxfkesvSmdGubmnTg_r0ZFdEXyUPC5ZwkHEJuKcwoZTDHfqfnngLwJAaaxYyxLOZnZEJZyuIsjM9_zoxdkivvdwCQMCgmJFnatleu9raLrIlK5fYRduiqY9TaEhsfKTOgi14b1el9lADl1-TCqMbjzfc-JZvHh_flc7x-eVotF-tY8yQZYoFqm6LGbZ6AKRRwkfJECEMZ1ZpnIgUlSi0YxVzlBQ1_S42ggEWpU6XSKbkbb-2d_TigH-TOHlwXHpS0YJkIaA6Bmo1UpRqUdWfs4JQOq8S21rZDU4f5gkMRSmWUBuH-jxCYAT-HSh28l6vN2182G1ntrPcOjexd3Sp3lBTkKb08pZdjehnSy1N6yYOYj6IPQleh-_X3_80vwcOGfw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Xu, Yue-Yao</creator><creator>Zhang, Xin</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>7U5</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20161101</creationdate><title>Comparison of dark energy models after Planck 2015</title><author>Xu, Yue-Yao ; Zhang, Xin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c522t-9eab3eceb720f8a05935299f141cc56930a9dc941e7a7816043f910e8dc3aa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Comparative analysis</topic><topic>Cosmic background radiation</topic><topic>Dark energy</topic><topic>Elementary Particles</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Measurement Science and Instrumentation</topic><topic>Nuclear Energy</topic><topic>Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Field Theories</topic><topic>Quantum Field Theory</topic><topic>Regular Article - Theoretical Physics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Yue-Yao</creatorcontrib><creatorcontrib>Zhang, Xin</creatorcontrib><collection>Springer Nature OA/Free Journals</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>The European physical journal. C, Particles and fields</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Yue-Yao</au><au>Zhang, Xin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparison of dark energy models after Planck 2015</atitle><jtitle>The European physical journal. C, Particles and fields</jtitle><stitle>Eur. Phys. J. C</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>76</volume><issue>11</issue><spage>1</spage><pages>1-</pages><artnum>588</artnum><issn>1434-6044</issn><eissn>1434-6052</eissn><abstract>We make a comparison for ten typical, popular dark energy models according to their capabilities of fitting the current observational data. The observational data we use in this work include the JLA sample of type Ia supernovae observation, the Planck 2015 distance priors of cosmic microwave background observation, the baryon acoustic oscillations measurements, and the direct measurement of the Hubble constant. Since the models have different numbers of parameters, in order to make a fair comparison, we employ the Akaike and Bayesian information criteria to assess the worth of the models. The analysis results show that, according to the capability of explaining observations, the cosmological constant model is still the best one among all the dark energy models. The generalized Chaplygin gas model, the constant w model, and the α dark energy model are worse than the cosmological constant model, but still are good models compared to others. The holographic dark energy model, the new generalized Chaplygin gas model, and the Chevalliear–Polarski–Linder model can still fit the current observations well, but from an economically feasible perspective, they are not so good. The new agegraphic dark energy model, the Dvali–Gabadadze–Porrati model, and the Ricci dark energy model are excluded by the current observations.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjc/s10052-016-4446-5</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1434-6044
ispartof The European physical journal. C, Particles and fields, 2016-11, Vol.76 (11), p.1, Article 588
issn 1434-6044
1434-6052
language eng
recordid cdi_proquest_journals_1846991070
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerNature Journals; Springer Nature OA/Free Journals
subjects Astronomy
Astrophysics and Cosmology
Comparative analysis
Cosmic background radiation
Dark energy
Elementary Particles
Hadrons
Heavy Ions
Measurement Science and Instrumentation
Nuclear Energy
Nuclear Physics
Physics
Physics and Astronomy
Quantum Field Theories
Quantum Field Theory
Regular Article - Theoretical Physics
String Theory
title Comparison of dark energy models after Planck 2015
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-11-28T22%3A53%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparison%20of%20dark%20energy%20models%20after%20Planck%202015&rft.jtitle=The%20European%20physical%20journal.%20C,%20Particles%20and%20fields&rft.au=Xu,%20Yue-Yao&rft.date=2016-11-01&rft.volume=76&rft.issue=11&rft.spage=1&rft.pages=1-&rft.artnum=588&rft.issn=1434-6044&rft.eissn=1434-6052&rft_id=info:doi/10.1140/epjc/s10052-016-4446-5&rft_dat=%3Cgale_proqu%3EA508140611%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1846991070&rft_id=info:pmid/&rft_galeid=A508140611&rfr_iscdi=true