Genome-Wide Analysis of RNA Secondary Structure
Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell...
Gespeichert in:
Veröffentlicht in: | Annual review of genetics 2016-11, Vol.50 (1), p.235-266 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 266 |
---|---|
container_issue | 1 |
container_start_page | 235 |
container_title | Annual review of genetics |
container_volume | 50 |
creator | Bevilacqua, Philip C Ritchey, Laura E Su, Zhao Assmann, Sarah M |
description | Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast,
Arabidopsis
, and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application. |
doi_str_mv | 10.1146/annurev-genet-120215-035034 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1845706804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4269391301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</originalsourceid><addsrcrecordid>eNqVkU1Lw0AURQdRbK3-BQl042bsfGeCG0vRKhQFq7gcJsmLpOSjZhKl_95pU1240tVszrv3zTsIjSm5pFSoia2qroEP_AYVtJgywqjEhEvCxQEaUikkZpHQh2hIiFJY0CgcoBPnVoQQETJ5jAYsVEIrwYZoMoeqLgG_5ikE08oWG5e7oM6Cp4dpsISkrlLbbIJl23RJ62tP0VFmCwdn-3eEXm5vnmd3ePE4v59NF9hKqVusQFitIs4i4DIloeQ24YJaKqRKbRqRlEVJpmRiqZI6zrTfDELIkthGKiYxH6GLPnfd1O8duNaUuUugKGwFdecM1UpzLkOi_oAKoYgiTHh0_Atd1V3jf72jtml-EU9d9VTS1M41kJl1k5f-DIYSs1Vg9grMToHpFZhegZ8-33d0cQnpz-z3zT1w3QPbFFv4nBw-3b86vgCIoJmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845706804</pqid></control><display><type>article</type><title>Genome-Wide Analysis of RNA Secondary Structure</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Bevilacqua, Philip C ; Ritchey, Laura E ; Su, Zhao ; Assmann, Sarah M</creator><creatorcontrib>Bevilacqua, Philip C ; Ritchey, Laura E ; Su, Zhao ; Assmann, Sarah M</creatorcontrib><description>Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast,
Arabidopsis
, and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.</description><identifier>ISSN: 0066-4197</identifier><identifier>EISSN: 1545-2948</identifier><identifier>DOI: 10.1146/annurev-genet-120215-035034</identifier><identifier>PMID: 27648642</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Arabidopsis ; Binding sites ; Biochemistry - methods ; DMS-seq ; Genome ; genome-wide ; Genomes ; Genomics - methods ; in vivo RNA folding ; Lentivirus ; Molecules ; Nucleic Acid Conformation ; Polyadenylation ; Protein Biosynthesis ; Proteins ; Retroviridae ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA - metabolism ; RNA Processing, Post-Transcriptional ; RNA Splicing ; RNA Stability ; RNA structurome ; SHAPE ; Spliceosomes - genetics ; Spliceosomes - metabolism ; Structure-seq ; Transcription factors ; Yeasts</subject><ispartof>Annual review of genetics, 2016-11, Vol.50 (1), p.235-266</ispartof><rights>Copyright © 2016 by Annual Reviews. All rights reserved 2016</rights><rights>Copyright Annual Reviews, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</citedby><cites>FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-genet-120215-035034?crawler=true&mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-genet-120215-035034$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,778,782,4170,27907,27908,78005,78006</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27648642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bevilacqua, Philip C</creatorcontrib><creatorcontrib>Ritchey, Laura E</creatorcontrib><creatorcontrib>Su, Zhao</creatorcontrib><creatorcontrib>Assmann, Sarah M</creatorcontrib><title>Genome-Wide Analysis of RNA Secondary Structure</title><title>Annual review of genetics</title><addtitle>Annu Rev Genet</addtitle><description>Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast,
Arabidopsis
, and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.</description><subject>Arabidopsis</subject><subject>Binding sites</subject><subject>Biochemistry - methods</subject><subject>DMS-seq</subject><subject>Genome</subject><subject>genome-wide</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>in vivo RNA folding</subject><subject>Lentivirus</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Polyadenylation</subject><subject>Protein Biosynthesis</subject><subject>Proteins</subject><subject>Retroviridae</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA Splicing</subject><subject>RNA Stability</subject><subject>RNA structurome</subject><subject>SHAPE</subject><subject>Spliceosomes - genetics</subject><subject>Spliceosomes - metabolism</subject><subject>Structure-seq</subject><subject>Transcription factors</subject><subject>Yeasts</subject><issn>0066-4197</issn><issn>1545-2948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkU1Lw0AURQdRbK3-BQl042bsfGeCG0vRKhQFq7gcJsmLpOSjZhKl_95pU1240tVszrv3zTsIjSm5pFSoia2qroEP_AYVtJgywqjEhEvCxQEaUikkZpHQh2hIiFJY0CgcoBPnVoQQETJ5jAYsVEIrwYZoMoeqLgG_5ikE08oWG5e7oM6Cp4dpsISkrlLbbIJl23RJ62tP0VFmCwdn-3eEXm5vnmd3ePE4v59NF9hKqVusQFitIs4i4DIloeQ24YJaKqRKbRqRlEVJpmRiqZI6zrTfDELIkthGKiYxH6GLPnfd1O8duNaUuUugKGwFdecM1UpzLkOi_oAKoYgiTHh0_Atd1V3jf72jtml-EU9d9VTS1M41kJl1k5f-DIYSs1Vg9grMToHpFZhegZ8-33d0cQnpz-z3zT1w3QPbFFv4nBw-3b86vgCIoJmW</recordid><startdate>20161123</startdate><enddate>20161123</enddate><creator>Bevilacqua, Philip C</creator><creator>Ritchey, Laura E</creator><creator>Su, Zhao</creator><creator>Assmann, Sarah M</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161123</creationdate><title>Genome-Wide Analysis of RNA Secondary Structure</title><author>Bevilacqua, Philip C ; Ritchey, Laura E ; Su, Zhao ; Assmann, Sarah M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis</topic><topic>Binding sites</topic><topic>Biochemistry - methods</topic><topic>DMS-seq</topic><topic>Genome</topic><topic>genome-wide</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>in vivo RNA folding</topic><topic>Lentivirus</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Polyadenylation</topic><topic>Protein Biosynthesis</topic><topic>Proteins</topic><topic>Retroviridae</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA Splicing</topic><topic>RNA Stability</topic><topic>RNA structurome</topic><topic>SHAPE</topic><topic>Spliceosomes - genetics</topic><topic>Spliceosomes - metabolism</topic><topic>Structure-seq</topic><topic>Transcription factors</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevilacqua, Philip C</creatorcontrib><creatorcontrib>Ritchey, Laura E</creatorcontrib><creatorcontrib>Su, Zhao</creatorcontrib><creatorcontrib>Assmann, Sarah M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevilacqua, Philip C</au><au>Ritchey, Laura E</au><au>Su, Zhao</au><au>Assmann, Sarah M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis of RNA Secondary Structure</atitle><jtitle>Annual review of genetics</jtitle><addtitle>Annu Rev Genet</addtitle><date>2016-11-23</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>235</spage><epage>266</epage><pages>235-266</pages><issn>0066-4197</issn><eissn>1545-2948</eissn><abstract>Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast,
Arabidopsis
, and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>27648642</pmid><doi>10.1146/annurev-genet-120215-035034</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0066-4197 |
ispartof | Annual review of genetics, 2016-11, Vol.50 (1), p.235-266 |
issn | 0066-4197 1545-2948 |
language | eng |
recordid | cdi_proquest_journals_1845706804 |
source | Annual Reviews Complete A-Z List; MEDLINE |
subjects | Arabidopsis Binding sites Biochemistry - methods DMS-seq Genome genome-wide Genomes Genomics - methods in vivo RNA folding Lentivirus Molecules Nucleic Acid Conformation Polyadenylation Protein Biosynthesis Proteins Retroviridae Ribonucleic acid RNA RNA - chemistry RNA - metabolism RNA Processing, Post-Transcriptional RNA Splicing RNA Stability RNA structurome SHAPE Spliceosomes - genetics Spliceosomes - metabolism Structure-seq Transcription factors Yeasts |
title | Genome-Wide Analysis of RNA Secondary Structure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20of%20RNA%20Secondary%20Structure&rft.jtitle=Annual%20review%20of%20genetics&rft.au=Bevilacqua,%20Philip%20C&rft.date=2016-11-23&rft.volume=50&rft.issue=1&rft.spage=235&rft.epage=266&rft.pages=235-266&rft.issn=0066-4197&rft.eissn=1545-2948&rft_id=info:doi/10.1146/annurev-genet-120215-035034&rft_dat=%3Cproquest_pubme%3E4269391301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845706804&rft_id=info:pmid/27648642&rfr_iscdi=true |