Genome-Wide Analysis of RNA Secondary Structure

Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of genetics 2016-11, Vol.50 (1), p.235-266
Hauptverfasser: Bevilacqua, Philip C, Ritchey, Laura E, Su, Zhao, Assmann, Sarah M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 266
container_issue 1
container_start_page 235
container_title Annual review of genetics
container_volume 50
creator Bevilacqua, Philip C
Ritchey, Laura E
Su, Zhao
Assmann, Sarah M
description Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast, Arabidopsis , and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.
doi_str_mv 10.1146/annurev-genet-120215-035034
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_journals_1845706804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4269391301</sourcerecordid><originalsourceid>FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</originalsourceid><addsrcrecordid>eNqVkU1Lw0AURQdRbK3-BQl042bsfGeCG0vRKhQFq7gcJsmLpOSjZhKl_95pU1240tVszrv3zTsIjSm5pFSoia2qroEP_AYVtJgywqjEhEvCxQEaUikkZpHQh2hIiFJY0CgcoBPnVoQQETJ5jAYsVEIrwYZoMoeqLgG_5ikE08oWG5e7oM6Cp4dpsISkrlLbbIJl23RJ62tP0VFmCwdn-3eEXm5vnmd3ePE4v59NF9hKqVusQFitIs4i4DIloeQ24YJaKqRKbRqRlEVJpmRiqZI6zrTfDELIkthGKiYxH6GLPnfd1O8duNaUuUugKGwFdecM1UpzLkOi_oAKoYgiTHh0_Atd1V3jf72jtml-EU9d9VTS1M41kJl1k5f-DIYSs1Vg9grMToHpFZhegZ8-33d0cQnpz-z3zT1w3QPbFFv4nBw-3b86vgCIoJmW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845706804</pqid></control><display><type>article</type><title>Genome-Wide Analysis of RNA Secondary Structure</title><source>Annual Reviews Complete A-Z List</source><source>MEDLINE</source><creator>Bevilacqua, Philip C ; Ritchey, Laura E ; Su, Zhao ; Assmann, Sarah M</creator><creatorcontrib>Bevilacqua, Philip C ; Ritchey, Laura E ; Su, Zhao ; Assmann, Sarah M</creatorcontrib><description>Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast, Arabidopsis , and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.</description><identifier>ISSN: 0066-4197</identifier><identifier>EISSN: 1545-2948</identifier><identifier>DOI: 10.1146/annurev-genet-120215-035034</identifier><identifier>PMID: 27648642</identifier><language>eng</language><publisher>United States: Annual Reviews</publisher><subject>Arabidopsis ; Binding sites ; Biochemistry - methods ; DMS-seq ; Genome ; genome-wide ; Genomes ; Genomics - methods ; in vivo RNA folding ; Lentivirus ; Molecules ; Nucleic Acid Conformation ; Polyadenylation ; Protein Biosynthesis ; Proteins ; Retroviridae ; Ribonucleic acid ; RNA ; RNA - chemistry ; RNA - metabolism ; RNA Processing, Post-Transcriptional ; RNA Splicing ; RNA Stability ; RNA structurome ; SHAPE ; Spliceosomes - genetics ; Spliceosomes - metabolism ; Structure-seq ; Transcription factors ; Yeasts</subject><ispartof>Annual review of genetics, 2016-11, Vol.50 (1), p.235-266</ispartof><rights>Copyright © 2016 by Annual Reviews. All rights reserved 2016</rights><rights>Copyright Annual Reviews, Inc. 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</citedby><cites>FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-genet-120215-035034?crawler=true&amp;mimetype=application/pdf$$EPDF$$P50$$Gannualreviews$$H</linktopdf><linktohtml>$$Uhttps://www.annualreviews.org/content/journals/10.1146/annurev-genet-120215-035034$$EHTML$$P50$$Gannualreviews$$H</linktohtml><link.rule.ids>70,314,778,782,4170,27907,27908,78005,78006</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27648642$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bevilacqua, Philip C</creatorcontrib><creatorcontrib>Ritchey, Laura E</creatorcontrib><creatorcontrib>Su, Zhao</creatorcontrib><creatorcontrib>Assmann, Sarah M</creatorcontrib><title>Genome-Wide Analysis of RNA Secondary Structure</title><title>Annual review of genetics</title><addtitle>Annu Rev Genet</addtitle><description>Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast, Arabidopsis , and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.</description><subject>Arabidopsis</subject><subject>Binding sites</subject><subject>Biochemistry - methods</subject><subject>DMS-seq</subject><subject>Genome</subject><subject>genome-wide</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>in vivo RNA folding</subject><subject>Lentivirus</subject><subject>Molecules</subject><subject>Nucleic Acid Conformation</subject><subject>Polyadenylation</subject><subject>Protein Biosynthesis</subject><subject>Proteins</subject><subject>Retroviridae</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - chemistry</subject><subject>RNA - metabolism</subject><subject>RNA Processing, Post-Transcriptional</subject><subject>RNA Splicing</subject><subject>RNA Stability</subject><subject>RNA structurome</subject><subject>SHAPE</subject><subject>Spliceosomes - genetics</subject><subject>Spliceosomes - metabolism</subject><subject>Structure-seq</subject><subject>Transcription factors</subject><subject>Yeasts</subject><issn>0066-4197</issn><issn>1545-2948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqVkU1Lw0AURQdRbK3-BQl042bsfGeCG0vRKhQFq7gcJsmLpOSjZhKl_95pU1240tVszrv3zTsIjSm5pFSoia2qroEP_AYVtJgywqjEhEvCxQEaUikkZpHQh2hIiFJY0CgcoBPnVoQQETJ5jAYsVEIrwYZoMoeqLgG_5ikE08oWG5e7oM6Cp4dpsISkrlLbbIJl23RJ62tP0VFmCwdn-3eEXm5vnmd3ePE4v59NF9hKqVusQFitIs4i4DIloeQ24YJaKqRKbRqRlEVJpmRiqZI6zrTfDELIkthGKiYxH6GLPnfd1O8duNaUuUugKGwFdecM1UpzLkOi_oAKoYgiTHh0_Atd1V3jf72jtml-EU9d9VTS1M41kJl1k5f-DIYSs1Vg9grMToHpFZhegZ8-33d0cQnpz-z3zT1w3QPbFFv4nBw-3b86vgCIoJmW</recordid><startdate>20161123</startdate><enddate>20161123</enddate><creator>Bevilacqua, Philip C</creator><creator>Ritchey, Laura E</creator><creator>Su, Zhao</creator><creator>Assmann, Sarah M</creator><general>Annual Reviews</general><general>Annual Reviews, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20161123</creationdate><title>Genome-Wide Analysis of RNA Secondary Structure</title><author>Bevilacqua, Philip C ; Ritchey, Laura E ; Su, Zhao ; Assmann, Sarah M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a558t-6e4a869329e35d0753ac341a1456dad90d29cf65ca1658bf8047e7efcba96b0b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arabidopsis</topic><topic>Binding sites</topic><topic>Biochemistry - methods</topic><topic>DMS-seq</topic><topic>Genome</topic><topic>genome-wide</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>in vivo RNA folding</topic><topic>Lentivirus</topic><topic>Molecules</topic><topic>Nucleic Acid Conformation</topic><topic>Polyadenylation</topic><topic>Protein Biosynthesis</topic><topic>Proteins</topic><topic>Retroviridae</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - chemistry</topic><topic>RNA - metabolism</topic><topic>RNA Processing, Post-Transcriptional</topic><topic>RNA Splicing</topic><topic>RNA Stability</topic><topic>RNA structurome</topic><topic>SHAPE</topic><topic>Spliceosomes - genetics</topic><topic>Spliceosomes - metabolism</topic><topic>Structure-seq</topic><topic>Transcription factors</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bevilacqua, Philip C</creatorcontrib><creatorcontrib>Ritchey, Laura E</creatorcontrib><creatorcontrib>Su, Zhao</creatorcontrib><creatorcontrib>Assmann, Sarah M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annual review of genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bevilacqua, Philip C</au><au>Ritchey, Laura E</au><au>Su, Zhao</au><au>Assmann, Sarah M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis of RNA Secondary Structure</atitle><jtitle>Annual review of genetics</jtitle><addtitle>Annu Rev Genet</addtitle><date>2016-11-23</date><risdate>2016</risdate><volume>50</volume><issue>1</issue><spage>235</spage><epage>266</epage><pages>235-266</pages><issn>0066-4197</issn><eissn>1545-2948</eissn><abstract>Single-stranded RNA molecules fold into extraordinarily complicated secondary and tertiary structures as a result of intramolecular base pairing. In vivo, these RNA structures are not static. Instead, they are remodeled in response to changes in the prevailing physicochemical environment of the cell and as a result of intermolecular base pairing and interactions with RNA-binding proteins. Remarkable technical advances now allow us to probe RNA secondary structure at single-nucleotide resolution and genome-wide, both in vitro and in vivo. These data sets provide new glimpses into the RNA universe. Analyses of RNA structuromes in HIV, yeast, Arabidopsis , and mammalian cells and tissues have revealed regulatory effects of RNA structure on messenger RNA (mRNA) polyadenylation, splicing, translation, and turnover. Application of new methods for genome-wide identification of mRNA modifications, particularly methylation and pseudouridylation, has shown that the RNA "epitranscriptome" both influences and is influenced by RNA structure. In this review, we describe newly developed genome-wide RNA structure-probing methods and synthesize the information emerging from their application.</abstract><cop>United States</cop><pub>Annual Reviews</pub><pmid>27648642</pmid><doi>10.1146/annurev-genet-120215-035034</doi><tpages>32</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0066-4197
ispartof Annual review of genetics, 2016-11, Vol.50 (1), p.235-266
issn 0066-4197
1545-2948
language eng
recordid cdi_proquest_journals_1845706804
source Annual Reviews Complete A-Z List; MEDLINE
subjects Arabidopsis
Binding sites
Biochemistry - methods
DMS-seq
Genome
genome-wide
Genomes
Genomics - methods
in vivo RNA folding
Lentivirus
Molecules
Nucleic Acid Conformation
Polyadenylation
Protein Biosynthesis
Proteins
Retroviridae
Ribonucleic acid
RNA
RNA - chemistry
RNA - metabolism
RNA Processing, Post-Transcriptional
RNA Splicing
RNA Stability
RNA structurome
SHAPE
Spliceosomes - genetics
Spliceosomes - metabolism
Structure-seq
Transcription factors
Yeasts
title Genome-Wide Analysis of RNA Secondary Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A51%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20of%20RNA%20Secondary%20Structure&rft.jtitle=Annual%20review%20of%20genetics&rft.au=Bevilacqua,%20Philip%20C&rft.date=2016-11-23&rft.volume=50&rft.issue=1&rft.spage=235&rft.epage=266&rft.pages=235-266&rft.issn=0066-4197&rft.eissn=1545-2948&rft_id=info:doi/10.1146/annurev-genet-120215-035034&rft_dat=%3Cproquest_pubme%3E4269391301%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845706804&rft_id=info:pmid/27648642&rfr_iscdi=true