Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C
T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for...
Gespeichert in:
Veröffentlicht in: | Materials and corrosion 2016-12, Vol.67 (12), p.1274-1285 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1285 |
---|---|
container_issue | 12 |
container_start_page | 1274 |
container_title | Materials and corrosion |
container_volume | 67 |
creator | Tian, S. J. Jiang, Z. Z. Luo, L. |
description | T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite.
The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again. |
doi_str_mv | 10.1002/maco.201609075 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1845156185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4267476571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</originalsourceid><addsrcrecordid>eNqFkDtOw0AQQFcIJEKgpV6J2mHG9v7KKIKABKQJn261Xq9hwfGC7UDS0XIbzsBROAmOgiI6qpFG781Ij5BDhAECxMczY8MgBuSgQLAt0kMWY5Si4NukByoVEUMUu2SvaR4BEFWS9oieLHxuWh8qmrkH8-pDTUNBpwpp0zpXUl_RogxvvrqnYbG8d1VkQ9UaX602pTN5lPlmNm8fqJu3zrbeUtNSBvD9_vH1OdonO4UpG3fwO_vk-vRkOjqLLibj89HwIrKxABbFOWeyMFYpbrgxqbRZgSATyzhkSlknhXMqT8Bmuci4ZGmexzlKIcChdCbpk6P13ec6vMxd0-rHMK-r7qVGmTJkHCXrqMGasnVomtoV-rn2M1MvNYJeRdSriHoTsRPUWnjzpVv-Q-vL4Wjy143Wru9KLjauqZ80F0mH316NNbu5PY3HsdB3yQ9AJoaZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845156185</pqid></control><display><type>article</type><title>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, S. J. ; Jiang, Z. Z. ; Luo, L.</creator><creatorcontrib>Tian, S. J. ; Jiang, Z. Z. ; Luo, L.</creatorcontrib><description>T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite.
The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.201609075</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Bismuth ; Chromium ; corrosion ; Corrosion tests ; Eutectic reactions ; Eutectic temperature ; growth kinetics ; Growth models ; Heat resistant steels ; Internal oxidation ; Iron oxides ; lead-bismuth eutectic ; Magnetite ; Martensitic stainless steels ; Oxidation ; Oxygen ; Rate constants ; Reaction kinetics ; Scale (corrosion) ; Spinel ; T91</subject><ispartof>Materials and corrosion, 2016-12, Vol.67 (12), p.1274-1285</ispartof><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</citedby><cites>FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.201609075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.201609075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tian, S. J.</creatorcontrib><creatorcontrib>Jiang, Z. Z.</creatorcontrib><creatorcontrib>Luo, L.</creatorcontrib><title>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</title><title>Materials and corrosion</title><addtitle>Materials and Corrosion</addtitle><description>T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite.
The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.</description><subject>Bismuth</subject><subject>Chromium</subject><subject>corrosion</subject><subject>Corrosion tests</subject><subject>Eutectic reactions</subject><subject>Eutectic temperature</subject><subject>growth kinetics</subject><subject>Growth models</subject><subject>Heat resistant steels</subject><subject>Internal oxidation</subject><subject>Iron oxides</subject><subject>lead-bismuth eutectic</subject><subject>Magnetite</subject><subject>Martensitic stainless steels</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Scale (corrosion)</subject><subject>Spinel</subject><subject>T91</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkDtOw0AQQFcIJEKgpV6J2mHG9v7KKIKABKQJn261Xq9hwfGC7UDS0XIbzsBROAmOgiI6qpFG781Ij5BDhAECxMczY8MgBuSgQLAt0kMWY5Si4NukByoVEUMUu2SvaR4BEFWS9oieLHxuWh8qmrkH8-pDTUNBpwpp0zpXUl_RogxvvrqnYbG8d1VkQ9UaX602pTN5lPlmNm8fqJu3zrbeUtNSBvD9_vH1OdonO4UpG3fwO_vk-vRkOjqLLibj89HwIrKxABbFOWeyMFYpbrgxqbRZgSATyzhkSlknhXMqT8Bmuci4ZGmexzlKIcChdCbpk6P13ec6vMxd0-rHMK-r7qVGmTJkHCXrqMGasnVomtoV-rn2M1MvNYJeRdSriHoTsRPUWnjzpVv-Q-vL4Wjy143Wru9KLjauqZ80F0mH316NNbu5PY3HsdB3yQ9AJoaZ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Tian, S. J.</creator><creator>Jiang, Z. Z.</creator><creator>Luo, L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201612</creationdate><title>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</title><author>Tian, S. J. ; Jiang, Z. Z. ; Luo, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth</topic><topic>Chromium</topic><topic>corrosion</topic><topic>Corrosion tests</topic><topic>Eutectic reactions</topic><topic>Eutectic temperature</topic><topic>growth kinetics</topic><topic>Growth models</topic><topic>Heat resistant steels</topic><topic>Internal oxidation</topic><topic>Iron oxides</topic><topic>lead-bismuth eutectic</topic><topic>Magnetite</topic><topic>Martensitic stainless steels</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Scale (corrosion)</topic><topic>Spinel</topic><topic>T91</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, S. J.</creatorcontrib><creatorcontrib>Jiang, Z. Z.</creatorcontrib><creatorcontrib>Luo, L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, S. J.</au><au>Jiang, Z. Z.</au><au>Luo, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</atitle><jtitle>Materials and corrosion</jtitle><addtitle>Materials and Corrosion</addtitle><date>2016-12</date><risdate>2016</risdate><volume>67</volume><issue>12</issue><spage>1274</spage><epage>1285</epage><pages>1274-1285</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite.
The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/maco.201609075</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-5117 |
ispartof | Materials and corrosion, 2016-12, Vol.67 (12), p.1274-1285 |
issn | 0947-5117 1521-4176 |
language | eng |
recordid | cdi_proquest_journals_1845156185 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Bismuth Chromium corrosion Corrosion tests Eutectic reactions Eutectic temperature growth kinetics Growth models Heat resistant steels Internal oxidation Iron oxides lead-bismuth eutectic Magnetite Martensitic stainless steels Oxidation Oxygen Rate constants Reaction kinetics Scale (corrosion) Spinel T91 |
title | Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20behavior%20of%20T91%20steel%20in%20flowing%20oxygen-containing%20lead-bismuth%20eutectic%20at%20500%E2%80%89%C2%B0C&rft.jtitle=Materials%20and%20corrosion&rft.au=Tian,%20S.%20J.&rft.date=2016-12&rft.volume=67&rft.issue=12&rft.spage=1274&rft.epage=1285&rft.pages=1274-1285&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.201609075&rft_dat=%3Cproquest_cross%3E4267476571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845156185&rft_id=info:pmid/&rfr_iscdi=true |