Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C

T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials and corrosion 2016-12, Vol.67 (12), p.1274-1285
Hauptverfasser: Tian, S. J., Jiang, Z. Z., Luo, L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1285
container_issue 12
container_start_page 1274
container_title Materials and corrosion
container_volume 67
creator Tian, S. J.
Jiang, Z. Z.
Luo, L.
description T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite. The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.
doi_str_mv 10.1002/maco.201609075
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1845156185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4267476571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</originalsourceid><addsrcrecordid>eNqFkDtOw0AQQFcIJEKgpV6J2mHG9v7KKIKABKQJn261Xq9hwfGC7UDS0XIbzsBROAmOgiI6qpFG781Ij5BDhAECxMczY8MgBuSgQLAt0kMWY5Si4NukByoVEUMUu2SvaR4BEFWS9oieLHxuWh8qmrkH8-pDTUNBpwpp0zpXUl_RogxvvrqnYbG8d1VkQ9UaX602pTN5lPlmNm8fqJu3zrbeUtNSBvD9_vH1OdonO4UpG3fwO_vk-vRkOjqLLibj89HwIrKxABbFOWeyMFYpbrgxqbRZgSATyzhkSlknhXMqT8Bmuci4ZGmexzlKIcChdCbpk6P13ec6vMxd0-rHMK-r7qVGmTJkHCXrqMGasnVomtoV-rn2M1MvNYJeRdSriHoTsRPUWnjzpVv-Q-vL4Wjy143Wru9KLjauqZ80F0mH316NNbu5PY3HsdB3yQ9AJoaZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1845156185</pqid></control><display><type>article</type><title>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Tian, S. J. ; Jiang, Z. Z. ; Luo, L.</creator><creatorcontrib>Tian, S. J. ; Jiang, Z. Z. ; Luo, L.</creatorcontrib><description>T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite. The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.</description><identifier>ISSN: 0947-5117</identifier><identifier>EISSN: 1521-4176</identifier><identifier>DOI: 10.1002/maco.201609075</identifier><language>eng</language><publisher>Weinheim: Blackwell Publishing Ltd</publisher><subject>Bismuth ; Chromium ; corrosion ; Corrosion tests ; Eutectic reactions ; Eutectic temperature ; growth kinetics ; Growth models ; Heat resistant steels ; Internal oxidation ; Iron oxides ; lead-bismuth eutectic ; Magnetite ; Martensitic stainless steels ; Oxidation ; Oxygen ; Rate constants ; Reaction kinetics ; Scale (corrosion) ; Spinel ; T91</subject><ispartof>Materials and corrosion, 2016-12, Vol.67 (12), p.1274-1285</ispartof><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</citedby><cites>FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmaco.201609075$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmaco.201609075$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Tian, S. J.</creatorcontrib><creatorcontrib>Jiang, Z. Z.</creatorcontrib><creatorcontrib>Luo, L.</creatorcontrib><title>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</title><title>Materials and corrosion</title><addtitle>Materials and Corrosion</addtitle><description>T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite. The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.</description><subject>Bismuth</subject><subject>Chromium</subject><subject>corrosion</subject><subject>Corrosion tests</subject><subject>Eutectic reactions</subject><subject>Eutectic temperature</subject><subject>growth kinetics</subject><subject>Growth models</subject><subject>Heat resistant steels</subject><subject>Internal oxidation</subject><subject>Iron oxides</subject><subject>lead-bismuth eutectic</subject><subject>Magnetite</subject><subject>Martensitic stainless steels</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Scale (corrosion)</subject><subject>Spinel</subject><subject>T91</subject><issn>0947-5117</issn><issn>1521-4176</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqFkDtOw0AQQFcIJEKgpV6J2mHG9v7KKIKABKQJn261Xq9hwfGC7UDS0XIbzsBROAmOgiI6qpFG781Ij5BDhAECxMczY8MgBuSgQLAt0kMWY5Si4NukByoVEUMUu2SvaR4BEFWS9oieLHxuWh8qmrkH8-pDTUNBpwpp0zpXUl_RogxvvrqnYbG8d1VkQ9UaX602pTN5lPlmNm8fqJu3zrbeUtNSBvD9_vH1OdonO4UpG3fwO_vk-vRkOjqLLibj89HwIrKxABbFOWeyMFYpbrgxqbRZgSATyzhkSlknhXMqT8Bmuci4ZGmexzlKIcChdCbpk6P13ec6vMxd0-rHMK-r7qVGmTJkHCXrqMGasnVomtoV-rn2M1MvNYJeRdSriHoTsRPUWnjzpVv-Q-vL4Wjy143Wru9KLjauqZ80F0mH316NNbu5PY3HsdB3yQ9AJoaZ</recordid><startdate>201612</startdate><enddate>201612</enddate><creator>Tian, S. J.</creator><creator>Jiang, Z. Z.</creator><creator>Luo, L.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SE</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201612</creationdate><title>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</title><author>Tian, S. J. ; Jiang, Z. Z. ; Luo, L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2705-2d658fac996a6aa48cbf1083c560b99ce87ee9d30cbd7b6854dd2d18770e18ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bismuth</topic><topic>Chromium</topic><topic>corrosion</topic><topic>Corrosion tests</topic><topic>Eutectic reactions</topic><topic>Eutectic temperature</topic><topic>growth kinetics</topic><topic>Growth models</topic><topic>Heat resistant steels</topic><topic>Internal oxidation</topic><topic>Iron oxides</topic><topic>lead-bismuth eutectic</topic><topic>Magnetite</topic><topic>Martensitic stainless steels</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Scale (corrosion)</topic><topic>Spinel</topic><topic>T91</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tian, S. J.</creatorcontrib><creatorcontrib>Jiang, Z. Z.</creatorcontrib><creatorcontrib>Luo, L.</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Corrosion Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Materials and corrosion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tian, S. J.</au><au>Jiang, Z. Z.</au><au>Luo, L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C</atitle><jtitle>Materials and corrosion</jtitle><addtitle>Materials and Corrosion</addtitle><date>2016-12</date><risdate>2016</risdate><volume>67</volume><issue>12</issue><spage>1274</spage><epage>1285</epage><pages>1274-1285</pages><issn>0947-5117</issn><eissn>1521-4176</eissn><abstract>T91 is considered as a possible structural material for lead‐bismuth eutectic (LBE) cooled reactors. However, one of the main issues is the compatibility of T91 with LBE. In this work, the corrosion tests of T91 were performed in flowing (1 m/s) oxygen‐controlled LBE (1–3 × 10−6 wt% O) at 500 °C for up to 5000 h. The results show that a three‐layer oxide scale forms at the interface of T91 and LBE, consisting of Fe3O4 (magnetite), Fe‐Cr spinel and an internal oxidation zone (IOZ). The growth kinetics of the oxide scale follows a parabolic dependence (Δx2=kpt). The rate constants (kp) of Fe3O4, Fe‐Cr spinel, and IOZ are 0.052, 0.040, and 0.0057 μm2/h, respectively. In addition, the growth model of the oxide scale is established under consideration of the exfoliation process. This model clarifies the growth direction of each oxide layer and the transformation of Fe‐Cr spinel to magnetite. The growth model of oxide scale is established in combination with the exfoliation process: (a) magnetite that grows outwards, while Fe‐Cr spinel grows inwards. Besides, the solid‐state transformation of spinel to magnetite occurs at the magnetite/Fe‐Cr spinel interface; (b) magnetite firstly flakes off at the local regions. Subsequently, Fe‐Cr spinel and IOZ flake off. The exfoliation region becomes larger with time and can be oxidized in situ again.</abstract><cop>Weinheim</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/maco.201609075</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0947-5117
ispartof Materials and corrosion, 2016-12, Vol.67 (12), p.1274-1285
issn 0947-5117
1521-4176
language eng
recordid cdi_proquest_journals_1845156185
source Wiley Online Library Journals Frontfile Complete
subjects Bismuth
Chromium
corrosion
Corrosion tests
Eutectic reactions
Eutectic temperature
growth kinetics
Growth models
Heat resistant steels
Internal oxidation
Iron oxides
lead-bismuth eutectic
Magnetite
Martensitic stainless steels
Oxidation
Oxygen
Rate constants
Reaction kinetics
Scale (corrosion)
Spinel
T91
title Oxidation behavior of T91 steel in flowing oxygen-containing lead-bismuth eutectic at 500 °C
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A34%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Oxidation%20behavior%20of%20T91%20steel%20in%20flowing%20oxygen-containing%20lead-bismuth%20eutectic%20at%20500%E2%80%89%C2%B0C&rft.jtitle=Materials%20and%20corrosion&rft.au=Tian,%20S.%20J.&rft.date=2016-12&rft.volume=67&rft.issue=12&rft.spage=1274&rft.epage=1285&rft.pages=1274-1285&rft.issn=0947-5117&rft.eissn=1521-4176&rft_id=info:doi/10.1002/maco.201609075&rft_dat=%3Cproquest_cross%3E4267476571%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1845156185&rft_id=info:pmid/&rfr_iscdi=true