Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems

This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Asian journal of control 2016-11, Vol.18 (6), p.2244-2255
Hauptverfasser: Zhang, Xing-Hui, Zhang, Kemei, Xie, Xue-Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2255
container_issue 6
container_start_page 2244
container_title Asian journal of control
container_volume 18
creator Zhang, Xing-Hui
Zhang, Kemei
Xie, Xue-Jun
description This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.
doi_str_mv 10.1002/asjc.1312
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1844748619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4265705321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</originalsourceid><addsrcrecordid>eNp1kM1OAjEUhRujiYgufINJXLkYaKe_LAkKaAgaQVk2bacjxWEG2yGKT28JxJ2rc3PznXtzDgDXCHYQhFlXhZXpIIyyE9BCPUxSBnv4NM6UoVSwjJ6DixBWEDKEBW2Bu6GrXGPTuVvbZNYo7Ur3oxpXV0ldxEVtlio0ziRj975Mn3xufTKtq9JVVvlktguNXYdLcFaoMtiro7bB6_B-Phink6fRw6A_SQ3GNEuNsFhbjY3mBlJqTS5yVRDFaFROGC801yzDWBdKq5xThoWFFlJOiIaG4Da4Odzd-Ppza0MjV_XWV_GlRIIQTgSLmdvg9kAZX4fgbSE33q2V30kE5b4kuS9J7kuKbPfAfrnS7v4HZX_2ODg60oPDxejffw7lPyTjmFO5mI7ks1i8DN_ENHp_AW9ueHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844748619</pqid></control><display><type>article</type><title>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Xing-Hui ; Zhang, Kemei ; Xie, Xue-Jun</creator><creatorcontrib>Zhang, Xing-Hui ; Zhang, Kemei ; Xie, Xue-Jun</creatorcontrib><description>This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.1312</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Feedback control systems ; finite-time stabilization in probability ; Nonlinear systems ; state feedback control ; Stochastic high-order nonlinear systems</subject><ispartof>Asian journal of control, 2016-11, Vol.18 (6), p.2244-2255</ispartof><rights>2016 Chinese Automatic Control Society and John Wiley &amp; Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</citedby><cites>FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.1312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.1312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Xing-Hui</creatorcontrib><creatorcontrib>Zhang, Kemei</creatorcontrib><creatorcontrib>Xie, Xue-Jun</creatorcontrib><title>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</title><title>Asian journal of control</title><addtitle>Asian Journal of Control</addtitle><description>This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.</description><subject>Feedback control systems</subject><subject>finite-time stabilization in probability</subject><subject>Nonlinear systems</subject><subject>state feedback control</subject><subject>Stochastic high-order nonlinear systems</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAjEUhRujiYgufINJXLkYaKe_LAkKaAgaQVk2bacjxWEG2yGKT28JxJ2rc3PznXtzDgDXCHYQhFlXhZXpIIyyE9BCPUxSBnv4NM6UoVSwjJ6DixBWEDKEBW2Bu6GrXGPTuVvbZNYo7Ur3oxpXV0ldxEVtlio0ziRj975Mn3xufTKtq9JVVvlktguNXYdLcFaoMtiro7bB6_B-Phink6fRw6A_SQ3GNEuNsFhbjY3mBlJqTS5yVRDFaFROGC801yzDWBdKq5xThoWFFlJOiIaG4Da4Odzd-Ppza0MjV_XWV_GlRIIQTgSLmdvg9kAZX4fgbSE33q2V30kE5b4kuS9J7kuKbPfAfrnS7v4HZX_2ODg60oPDxejffw7lPyTjmFO5mI7ks1i8DN_ENHp_AW9ueHg</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Zhang, Xing-Hui</creator><creator>Zhang, Kemei</creator><creator>Xie, Xue-Jun</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201611</creationdate><title>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</title><author>Zhang, Xing-Hui ; Zhang, Kemei ; Xie, Xue-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Feedback control systems</topic><topic>finite-time stabilization in probability</topic><topic>Nonlinear systems</topic><topic>state feedback control</topic><topic>Stochastic high-order nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xing-Hui</creatorcontrib><creatorcontrib>Zhang, Kemei</creatorcontrib><creatorcontrib>Xie, Xue-Jun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xing-Hui</au><au>Zhang, Kemei</au><au>Xie, Xue-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian Journal of Control</addtitle><date>2016-11</date><risdate>2016</risdate><volume>18</volume><issue>6</issue><spage>2244</spage><epage>2255</epage><pages>2244-2255</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.1312</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1561-8625
ispartof Asian journal of control, 2016-11, Vol.18 (6), p.2244-2255
issn 1561-8625
1934-6093
language eng
recordid cdi_proquest_journals_1844748619
source Wiley Online Library - AutoHoldings Journals
subjects Feedback control systems
finite-time stabilization in probability
Nonlinear systems
state feedback control
Stochastic high-order nonlinear systems
title Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Stabilization%20of%20Stochastic%20High-Order%20Nonlinear%20Systems&rft.jtitle=Asian%20journal%20of%20control&rft.au=Zhang,%20Xing-Hui&rft.date=2016-11&rft.volume=18&rft.issue=6&rft.spage=2244&rft.epage=2255&rft.pages=2244-2255&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.1312&rft_dat=%3Cproquest_cross%3E4265705321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844748619&rft_id=info:pmid/&rfr_iscdi=true