Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems
This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐...
Gespeichert in:
Veröffentlicht in: | Asian journal of control 2016-11, Vol.18 (6), p.2244-2255 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2255 |
---|---|
container_issue | 6 |
container_start_page | 2244 |
container_title | Asian journal of control |
container_volume | 18 |
creator | Zhang, Xing-Hui Zhang, Kemei Xie, Xue-Jun |
description | This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a
C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability. |
doi_str_mv | 10.1002/asjc.1312 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1844748619</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4265705321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</originalsourceid><addsrcrecordid>eNp1kM1OAjEUhRujiYgufINJXLkYaKe_LAkKaAgaQVk2bacjxWEG2yGKT28JxJ2rc3PznXtzDgDXCHYQhFlXhZXpIIyyE9BCPUxSBnv4NM6UoVSwjJ6DixBWEDKEBW2Bu6GrXGPTuVvbZNYo7Ur3oxpXV0ldxEVtlio0ziRj975Mn3xufTKtq9JVVvlktguNXYdLcFaoMtiro7bB6_B-Phink6fRw6A_SQ3GNEuNsFhbjY3mBlJqTS5yVRDFaFROGC801yzDWBdKq5xThoWFFlJOiIaG4Da4Odzd-Ppza0MjV_XWV_GlRIIQTgSLmdvg9kAZX4fgbSE33q2V30kE5b4kuS9J7kuKbPfAfrnS7v4HZX_2ODg60oPDxejffw7lPyTjmFO5mI7ks1i8DN_ENHp_AW9ueHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844748619</pqid></control><display><type>article</type><title>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Zhang, Xing-Hui ; Zhang, Kemei ; Xie, Xue-Jun</creator><creatorcontrib>Zhang, Xing-Hui ; Zhang, Kemei ; Xie, Xue-Jun</creatorcontrib><description>This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a
C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.</description><identifier>ISSN: 1561-8625</identifier><identifier>EISSN: 1934-6093</identifier><identifier>DOI: 10.1002/asjc.1312</identifier><language>eng</language><publisher>Hoboken: Blackwell Publishing Ltd</publisher><subject>Feedback control systems ; finite-time stabilization in probability ; Nonlinear systems ; state feedback control ; Stochastic high-order nonlinear systems</subject><ispartof>Asian journal of control, 2016-11, Vol.18 (6), p.2244-2255</ispartof><rights>2016 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</citedby><cites>FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fasjc.1312$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fasjc.1312$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Zhang, Xing-Hui</creatorcontrib><creatorcontrib>Zhang, Kemei</creatorcontrib><creatorcontrib>Xie, Xue-Jun</creatorcontrib><title>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</title><title>Asian journal of control</title><addtitle>Asian Journal of Control</addtitle><description>This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a
C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.</description><subject>Feedback control systems</subject><subject>finite-time stabilization in probability</subject><subject>Nonlinear systems</subject><subject>state feedback control</subject><subject>Stochastic high-order nonlinear systems</subject><issn>1561-8625</issn><issn>1934-6093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OAjEUhRujiYgufINJXLkYaKe_LAkKaAgaQVk2bacjxWEG2yGKT28JxJ2rc3PznXtzDgDXCHYQhFlXhZXpIIyyE9BCPUxSBnv4NM6UoVSwjJ6DixBWEDKEBW2Bu6GrXGPTuVvbZNYo7Ur3oxpXV0ldxEVtlio0ziRj975Mn3xufTKtq9JVVvlktguNXYdLcFaoMtiro7bB6_B-Phink6fRw6A_SQ3GNEuNsFhbjY3mBlJqTS5yVRDFaFROGC801yzDWBdKq5xThoWFFlJOiIaG4Da4Odzd-Ppza0MjV_XWV_GlRIIQTgSLmdvg9kAZX4fgbSE33q2V30kE5b4kuS9J7kuKbPfAfrnS7v4HZX_2ODg60oPDxejffw7lPyTjmFO5mI7ks1i8DN_ENHp_AW9ueHg</recordid><startdate>201611</startdate><enddate>201611</enddate><creator>Zhang, Xing-Hui</creator><creator>Zhang, Kemei</creator><creator>Xie, Xue-Jun</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope></search><sort><creationdate>201611</creationdate><title>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</title><author>Zhang, Xing-Hui ; Zhang, Kemei ; Xie, Xue-Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3352-c8e3beb3cb7c055ecd8daf4a658da7467fb7b6233bfabad75638e0e05744b0c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Feedback control systems</topic><topic>finite-time stabilization in probability</topic><topic>Nonlinear systems</topic><topic>state feedback control</topic><topic>Stochastic high-order nonlinear systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xing-Hui</creatorcontrib><creatorcontrib>Zhang, Kemei</creatorcontrib><creatorcontrib>Xie, Xue-Jun</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><jtitle>Asian journal of control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xing-Hui</au><au>Zhang, Kemei</au><au>Xie, Xue-Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems</atitle><jtitle>Asian journal of control</jtitle><addtitle>Asian Journal of Control</addtitle><date>2016-11</date><risdate>2016</risdate><volume>18</volume><issue>6</issue><spage>2244</spage><epage>2255</epage><pages>2244-2255</pages><issn>1561-8625</issn><eissn>1934-6093</eissn><abstract>This paper considers the problem of global finite‐time stabilization in probability for stochastic high‐order nonlinear systems in which the power order is greater than or equal to one and the drift and diffusion terms satisfy weaker growth conditions. Based on stochastic Lyapunov theorem on finite‐time stability, via the combined adding one power integrator and sign function method, constructing a
C2 Lyapunov function and verifying the existence and uniqueness of solution, a continuous state feedback controller is designed to guarantee the closed‐loop system globally finite‐time stable in probability.</abstract><cop>Hoboken</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/asjc.1312</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1561-8625 |
ispartof | Asian journal of control, 2016-11, Vol.18 (6), p.2244-2255 |
issn | 1561-8625 1934-6093 |
language | eng |
recordid | cdi_proquest_journals_1844748619 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | Feedback control systems finite-time stabilization in probability Nonlinear systems state feedback control Stochastic high-order nonlinear systems |
title | Finite-Time Stabilization of Stochastic High-Order Nonlinear Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A19%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite-Time%20Stabilization%20of%20Stochastic%20High-Order%20Nonlinear%20Systems&rft.jtitle=Asian%20journal%20of%20control&rft.au=Zhang,%20Xing-Hui&rft.date=2016-11&rft.volume=18&rft.issue=6&rft.spage=2244&rft.epage=2255&rft.pages=2244-2255&rft.issn=1561-8625&rft.eissn=1934-6093&rft_id=info:doi/10.1002/asjc.1312&rft_dat=%3Cproquest_cross%3E4265705321%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844748619&rft_id=info:pmid/&rfr_iscdi=true |