Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines

Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become ineff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE systems journal 2016-12, Vol.10 (4), p.1459-1469
Hauptverfasser: Ruan, Yonghui, Cao, Zhongsheng, Cui, Zongmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1469
container_issue 4
container_start_page 1459
container_title IEEE systems journal
container_volume 10
creator Ruan, Yonghui
Cao, Zhongsheng
Cui, Zongmin
description Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.
doi_str_mv 10.1109/JSYST.2014.2363021
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1844102519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6948247</ieee_id><sourcerecordid>1844102519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEqXwB-ASibPLeIkTc6sqyqJWRWpB4mQ5XsBVSIKTIvXfky7iMjOHeTPvfQhdExgRAvLuZfmxXI0oED6iTDCg5AQNiGQZlpTx0_1McU5yfo4u2nYNkOZpJgdo8RodnoaycxFP6mZ7nzx4H0xwVZfoyiZLV3o8trrpwq9LZrsyD59Rd6Gukton7yF2G10mc22-QuXaS3Tmddm6q2Mforfpw2ryhGeLx-fJeIYNE2mHC5AgOKdO9y4s1cJZAUVBGRRWE2DGp4WwxjuZpwyshYxqXoiUGW61NAUbotvD3SbWPxvXdmpdb2LVv1R9SE6Apn3kIaKHLRPrto3OqyaGbx23ioDagVN7cGoHTh3B9aKbgyg45_4FQvKc8oz9AfZcaYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844102519</pqid></control><display><type>article</type><title>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Ruan, Yonghui ; Cao, Zhongsheng ; Cui, Zongmin</creator><creatorcontrib>Ruan, Yonghui ; Cao, Zhongsheng ; Cui, Zongmin</creatorcontrib><description>Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2014.2363021</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithm design and analysis ; Algorithms ; Bandwidth ; Data centers ; Downtime ; Forecasting ; Live migration ; Markov processes ; operating systems ; precopy ; Predictive models ; Resource management ; Scientific apparatus &amp; instruments ; Servers ; storage ; Virtual environments ; virtual machine (VM) ; Virtual machining ; Xen</subject><ispartof>IEEE systems journal, 2016-12, Vol.10 (4), p.1459-1469</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</citedby><cites>FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6948247$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6948247$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruan, Yonghui</creatorcontrib><creatorcontrib>Cao, Zhongsheng</creatorcontrib><creatorcontrib>Cui, Zongmin</creatorcontrib><title>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.</description><subject>Adaptive filters</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Data centers</subject><subject>Downtime</subject><subject>Forecasting</subject><subject>Live migration</subject><subject>Markov processes</subject><subject>operating systems</subject><subject>precopy</subject><subject>Predictive models</subject><subject>Resource management</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Servers</subject><subject>storage</subject><subject>Virtual environments</subject><subject>virtual machine (VM)</subject><subject>Virtual machining</subject><subject>Xen</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQhS0EEqXwB-ASibPLeIkTc6sqyqJWRWpB4mQ5XsBVSIKTIvXfky7iMjOHeTPvfQhdExgRAvLuZfmxXI0oED6iTDCg5AQNiGQZlpTx0_1McU5yfo4u2nYNkOZpJgdo8RodnoaycxFP6mZ7nzx4H0xwVZfoyiZLV3o8trrpwq9LZrsyD59Rd6Gukton7yF2G10mc22-QuXaS3Tmddm6q2Mforfpw2ryhGeLx-fJeIYNE2mHC5AgOKdO9y4s1cJZAUVBGRRWE2DGp4WwxjuZpwyshYxqXoiUGW61NAUbotvD3SbWPxvXdmpdb2LVv1R9SE6Apn3kIaKHLRPrto3OqyaGbx23ioDagVN7cGoHTh3B9aKbgyg45_4FQvKc8oz9AfZcaYk</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Ruan, Yonghui</creator><creator>Cao, Zhongsheng</creator><creator>Cui, Zongmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</title><author>Ruan, Yonghui ; Cao, Zhongsheng ; Cui, Zongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive filters</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Data centers</topic><topic>Downtime</topic><topic>Forecasting</topic><topic>Live migration</topic><topic>Markov processes</topic><topic>operating systems</topic><topic>precopy</topic><topic>Predictive models</topic><topic>Resource management</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Servers</topic><topic>storage</topic><topic>Virtual environments</topic><topic>virtual machine (VM)</topic><topic>Virtual machining</topic><topic>Xen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Yonghui</creatorcontrib><creatorcontrib>Cao, Zhongsheng</creatorcontrib><creatorcontrib>Cui, Zongmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruan, Yonghui</au><au>Cao, Zhongsheng</au><au>Cui, Zongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>1459</spage><epage>1469</epage><pages>1459-1469</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2014.2363021</doi><tpages>11</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-8184
ispartof IEEE systems journal, 2016-12, Vol.10 (4), p.1459-1469
issn 1932-8184
1937-9234
language eng
recordid cdi_proquest_journals_1844102519
source IEEE Electronic Library (IEL)
subjects Adaptive filters
Algorithm design and analysis
Algorithms
Bandwidth
Data centers
Downtime
Forecasting
Live migration
Markov processes
operating systems
precopy
Predictive models
Resource management
Scientific apparatus & instruments
Servers
storage
Virtual environments
virtual machine (VM)
Virtual machining
Xen
title Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-Filter-Copy:%20Efficient%20and%20Self-Adaptive%20Live%20Migration%20of%20Virtual%20Machines&rft.jtitle=IEEE%20systems%20journal&rft.au=Ruan,%20Yonghui&rft.date=2016-12-01&rft.volume=10&rft.issue=4&rft.spage=1459&rft.epage=1469&rft.pages=1459-1469&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2014.2363021&rft_dat=%3Cproquest_RIE%3E1844102519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844102519&rft_id=info:pmid/&rft_ieee_id=6948247&rfr_iscdi=true