Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines
Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become ineff...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2016-12, Vol.10 (4), p.1459-1469 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1469 |
---|---|
container_issue | 4 |
container_start_page | 1459 |
container_title | IEEE systems journal |
container_volume | 10 |
creator | Ruan, Yonghui Cao, Zhongsheng Cui, Zongmin |
description | Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level. |
doi_str_mv | 10.1109/JSYST.2014.2363021 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1844102519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>6948247</ieee_id><sourcerecordid>1844102519</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</originalsourceid><addsrcrecordid>eNo9kElPwzAQhS0EEqXwB-ASibPLeIkTc6sqyqJWRWpB4mQ5XsBVSIKTIvXfky7iMjOHeTPvfQhdExgRAvLuZfmxXI0oED6iTDCg5AQNiGQZlpTx0_1McU5yfo4u2nYNkOZpJgdo8RodnoaycxFP6mZ7nzx4H0xwVZfoyiZLV3o8trrpwq9LZrsyD59Rd6Gukton7yF2G10mc22-QuXaS3Tmddm6q2Mforfpw2ryhGeLx-fJeIYNE2mHC5AgOKdO9y4s1cJZAUVBGRRWE2DGp4WwxjuZpwyshYxqXoiUGW61NAUbotvD3SbWPxvXdmpdb2LVv1R9SE6Apn3kIaKHLRPrto3OqyaGbx23ioDagVN7cGoHTh3B9aKbgyg45_4FQvKc8oz9AfZcaYk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1844102519</pqid></control><display><type>article</type><title>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</title><source>IEEE Electronic Library (IEL)</source><creator>Ruan, Yonghui ; Cao, Zhongsheng ; Cui, Zongmin</creator><creatorcontrib>Ruan, Yonghui ; Cao, Zhongsheng ; Cui, Zongmin</creatorcontrib><description>Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2014.2363021</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptive filters ; Algorithm design and analysis ; Algorithms ; Bandwidth ; Data centers ; Downtime ; Forecasting ; Live migration ; Markov processes ; operating systems ; precopy ; Predictive models ; Resource management ; Scientific apparatus & instruments ; Servers ; storage ; Virtual environments ; virtual machine (VM) ; Virtual machining ; Xen</subject><ispartof>IEEE systems journal, 2016-12, Vol.10 (4), p.1459-1469</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</citedby><cites>FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/6948247$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/6948247$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ruan, Yonghui</creatorcontrib><creatorcontrib>Cao, Zhongsheng</creatorcontrib><creatorcontrib>Cui, Zongmin</creatorcontrib><title>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.</description><subject>Adaptive filters</subject><subject>Algorithm design and analysis</subject><subject>Algorithms</subject><subject>Bandwidth</subject><subject>Data centers</subject><subject>Downtime</subject><subject>Forecasting</subject><subject>Live migration</subject><subject>Markov processes</subject><subject>operating systems</subject><subject>precopy</subject><subject>Predictive models</subject><subject>Resource management</subject><subject>Scientific apparatus & instruments</subject><subject>Servers</subject><subject>storage</subject><subject>Virtual environments</subject><subject>virtual machine (VM)</subject><subject>Virtual machining</subject><subject>Xen</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kElPwzAQhS0EEqXwB-ASibPLeIkTc6sqyqJWRWpB4mQ5XsBVSIKTIvXfky7iMjOHeTPvfQhdExgRAvLuZfmxXI0oED6iTDCg5AQNiGQZlpTx0_1McU5yfo4u2nYNkOZpJgdo8RodnoaycxFP6mZ7nzx4H0xwVZfoyiZLV3o8trrpwq9LZrsyD59Rd6Gukton7yF2G10mc22-QuXaS3Tmddm6q2Mforfpw2ryhGeLx-fJeIYNE2mHC5AgOKdO9y4s1cJZAUVBGRRWE2DGp4WwxjuZpwyshYxqXoiUGW61NAUbotvD3SbWPxvXdmpdb2LVv1R9SE6Apn3kIaKHLRPrto3OqyaGbx23ioDagVN7cGoHTh3B9aKbgyg45_4FQvKc8oz9AfZcaYk</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Ruan, Yonghui</creator><creator>Cao, Zhongsheng</creator><creator>Cui, Zongmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</title><author>Ruan, Yonghui ; Cao, Zhongsheng ; Cui, Zongmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-b0906442ea579d2a6ed60bb230bda103cf5b6dcfe98530dd072a4b653c4da9cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adaptive filters</topic><topic>Algorithm design and analysis</topic><topic>Algorithms</topic><topic>Bandwidth</topic><topic>Data centers</topic><topic>Downtime</topic><topic>Forecasting</topic><topic>Live migration</topic><topic>Markov processes</topic><topic>operating systems</topic><topic>precopy</topic><topic>Predictive models</topic><topic>Resource management</topic><topic>Scientific apparatus & instruments</topic><topic>Servers</topic><topic>storage</topic><topic>Virtual environments</topic><topic>virtual machine (VM)</topic><topic>Virtual machining</topic><topic>Xen</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Yonghui</creatorcontrib><creatorcontrib>Cao, Zhongsheng</creatorcontrib><creatorcontrib>Cui, Zongmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ruan, Yonghui</au><au>Cao, Zhongsheng</au><au>Cui, Zongmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>10</volume><issue>4</issue><spage>1459</spage><epage>1469</epage><pages>1459-1469</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Live migration of virtual machines (VMs) is useful for resource management of data centers and cloud platforms. The precopy algorithm is widely used for memory migration. However, when encountered with write-intensive workloads, the precopy's straightforward iteration strategy will become inefficient. Worse still, it is hard to tune the performance with the existing parameters, unless load characteristics are known in advance. In this paper, we propose an improved pre-filter-copy (PFC) algorithm. The main target is to reduce migration time and bandwidth resource consumption of the precopy algorithm, while keeping downtime at the same level. We designed a novel data filter to achieve this goal. In each round of iteration, it forecasts the pages that will be subsequently dirtied and then filters them from the send list. Meanwhile, previously filtered pages will be reconsidered, to see if they can be added to the send list. This ensures that the downtime will not be increased. Furthermore, a new parameter is proposed to improve the adaptivity of the precopy algorithm. Experimental results show that the PFC algorithm significantly reduces migration time and the amount of migrated data, while keeping the downtime at the same level.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2014.2363021</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2016-12, Vol.10 (4), p.1459-1469 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_proquest_journals_1844102519 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptive filters Algorithm design and analysis Algorithms Bandwidth Data centers Downtime Forecasting Live migration Markov processes operating systems precopy Predictive models Resource management Scientific apparatus & instruments Servers storage Virtual environments virtual machine (VM) Virtual machining Xen |
title | Pre-Filter-Copy: Efficient and Self-Adaptive Live Migration of Virtual Machines |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A49%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pre-Filter-Copy:%20Efficient%20and%20Self-Adaptive%20Live%20Migration%20of%20Virtual%20Machines&rft.jtitle=IEEE%20systems%20journal&rft.au=Ruan,%20Yonghui&rft.date=2016-12-01&rft.volume=10&rft.issue=4&rft.spage=1459&rft.epage=1469&rft.pages=1459-1469&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2014.2363021&rft_dat=%3Cproquest_RIE%3E1844102519%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1844102519&rft_id=info:pmid/&rft_ieee_id=6948247&rfr_iscdi=true |