Improving Compressed Sensing With the Diamond Norm
In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on information theory 2016-12, Vol.62 (12), p.7445-7463 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7463 |
---|---|
container_issue | 12 |
container_start_page | 7445 |
container_title | IEEE transactions on information theory |
container_volume | 62 |
creator | Kliesch, Martin Kueng, Richard Eisert, Jens Gross, David |
description | In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem. |
doi_str_mv | 10.1109/TIT.2016.2606500 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1843764338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7562508</ieee_id><sourcerecordid>4262639701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3dnt5ijRaqHowYrHJU0mNsUkdTcV_PduaXEu88H7zgyPENcIE0TI7pbz5UQCmok0YDTAiRih1tM0M5pOxQgAbZoR2XNxEcImtqRRjoSct1vf_zTdZ5L3seQQuEreuAv70UczrJNhzclDU7R9VyUvvW8vxVldfAW-OuaxeJ89LvPndPH6NM_vF2lJYIeUrC0lEpDM1KpWBrOyAlaqQkajTBnDWGv0yoIiVIWqyegCK9Z1JssVqbG4PeyND37vOAxu0-98F086tKSmhpSyUQUHVen7EDzXbuubtvC_DsHtybhIxu3JuCOZaLk5WBpm_pdPtZEarPoDw7Nc6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1843764338</pqid></control><display><type>article</type><title>Improving Compressed Sensing With the Diamond Norm</title><source>IEEE Electronic Library (IEL)</source><creator>Kliesch, Martin ; Kueng, Richard ; Eisert, Jens ; Gross, David</creator><creatorcontrib>Kliesch, Martin ; Kueng, Richard ; Eisert, Jens ; Gross, David</creatorcontrib><description>In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2606500</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing ; Context ; Diamond ; Information theory ; inverse problems ; Linear matrix inequalities ; Matrix ; Measurement ; Norms ; Quantum mechanics ; state estimation ; system recovery ; Tensile stress ; Tomography</subject><ispartof>IEEE transactions on information theory, 2016-12, Vol.62 (12), p.7445-7463</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</citedby><cites>FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</cites><orcidid>0000-0002-8009-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7562508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7562508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kliesch, Martin</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Eisert, Jens</creatorcontrib><creatorcontrib>Gross, David</creatorcontrib><title>Improving Compressed Sensing With the Diamond Norm</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.</description><subject>Compressed sensing</subject><subject>Context</subject><subject>Diamond</subject><subject>Information theory</subject><subject>inverse problems</subject><subject>Linear matrix inequalities</subject><subject>Matrix</subject><subject>Measurement</subject><subject>Norms</subject><subject>Quantum mechanics</subject><subject>state estimation</subject><subject>system recovery</subject><subject>Tensile stress</subject><subject>Tomography</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3dnt5ijRaqHowYrHJU0mNsUkdTcV_PduaXEu88H7zgyPENcIE0TI7pbz5UQCmok0YDTAiRih1tM0M5pOxQgAbZoR2XNxEcImtqRRjoSct1vf_zTdZ5L3seQQuEreuAv70UczrJNhzclDU7R9VyUvvW8vxVldfAW-OuaxeJ89LvPndPH6NM_vF2lJYIeUrC0lEpDM1KpWBrOyAlaqQkajTBnDWGv0yoIiVIWqyegCK9Z1JssVqbG4PeyND37vOAxu0-98F086tKSmhpSyUQUHVen7EDzXbuubtvC_DsHtybhIxu3JuCOZaLk5WBpm_pdPtZEarPoDw7Nc6g</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Kliesch, Martin</creator><creator>Kueng, Richard</creator><creator>Eisert, Jens</creator><creator>Gross, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8009-0549</orcidid></search><sort><creationdate>20161201</creationdate><title>Improving Compressed Sensing With the Diamond Norm</title><author>Kliesch, Martin ; Kueng, Richard ; Eisert, Jens ; Gross, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressed sensing</topic><topic>Context</topic><topic>Diamond</topic><topic>Information theory</topic><topic>inverse problems</topic><topic>Linear matrix inequalities</topic><topic>Matrix</topic><topic>Measurement</topic><topic>Norms</topic><topic>Quantum mechanics</topic><topic>state estimation</topic><topic>system recovery</topic><topic>Tensile stress</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kliesch, Martin</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Eisert, Jens</creatorcontrib><creatorcontrib>Gross, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kliesch, Martin</au><au>Kueng, Richard</au><au>Eisert, Jens</au><au>Gross, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Compressed Sensing With the Diamond Norm</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>62</volume><issue>12</issue><spage>7445</spage><epage>7463</epage><pages>7445-7463</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2606500</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8009-0549</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9448 |
ispartof | IEEE transactions on information theory, 2016-12, Vol.62 (12), p.7445-7463 |
issn | 0018-9448 1557-9654 |
language | eng |
recordid | cdi_proquest_journals_1843764338 |
source | IEEE Electronic Library (IEL) |
subjects | Compressed sensing Context Diamond Information theory inverse problems Linear matrix inequalities Matrix Measurement Norms Quantum mechanics state estimation system recovery Tensile stress Tomography |
title | Improving Compressed Sensing With the Diamond Norm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Compressed%20Sensing%20With%20the%20Diamond%20Norm&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kliesch,%20Martin&rft.date=2016-12-01&rft.volume=62&rft.issue=12&rft.spage=7445&rft.epage=7463&rft.pages=7445-7463&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2606500&rft_dat=%3Cproquest_RIE%3E4262639701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1843764338&rft_id=info:pmid/&rft_ieee_id=7562508&rfr_iscdi=true |