Improving Compressed Sensing With the Diamond Norm

In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2016-12, Vol.62 (12), p.7445-7463
Hauptverfasser: Kliesch, Martin, Kueng, Richard, Eisert, Jens, Gross, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7463
container_issue 12
container_start_page 7445
container_title IEEE transactions on information theory
container_volume 62
creator Kliesch, Martin
Kueng, Richard
Eisert, Jens
Gross, David
description In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.
doi_str_mv 10.1109/TIT.2016.2606500
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1843764338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7562508</ieee_id><sourcerecordid>4262639701</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3dnt5ijRaqHowYrHJU0mNsUkdTcV_PduaXEu88H7zgyPENcIE0TI7pbz5UQCmok0YDTAiRih1tM0M5pOxQgAbZoR2XNxEcImtqRRjoSct1vf_zTdZ5L3seQQuEreuAv70UczrJNhzclDU7R9VyUvvW8vxVldfAW-OuaxeJ89LvPndPH6NM_vF2lJYIeUrC0lEpDM1KpWBrOyAlaqQkajTBnDWGv0yoIiVIWqyegCK9Z1JssVqbG4PeyND37vOAxu0-98F086tKSmhpSyUQUHVen7EDzXbuubtvC_DsHtybhIxu3JuCOZaLk5WBpm_pdPtZEarPoDw7Nc6g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1843764338</pqid></control><display><type>article</type><title>Improving Compressed Sensing With the Diamond Norm</title><source>IEEE Electronic Library (IEL)</source><creator>Kliesch, Martin ; Kueng, Richard ; Eisert, Jens ; Gross, David</creator><creatorcontrib>Kliesch, Martin ; Kueng, Richard ; Eisert, Jens ; Gross, David</creatorcontrib><description>In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2016.2606500</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compressed sensing ; Context ; Diamond ; Information theory ; inverse problems ; Linear matrix inequalities ; Matrix ; Measurement ; Norms ; Quantum mechanics ; state estimation ; system recovery ; Tensile stress ; Tomography</subject><ispartof>IEEE transactions on information theory, 2016-12, Vol.62 (12), p.7445-7463</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Dec 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</citedby><cites>FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</cites><orcidid>0000-0002-8009-0549</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7562508$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7562508$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kliesch, Martin</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Eisert, Jens</creatorcontrib><creatorcontrib>Gross, David</creatorcontrib><title>Improving Compressed Sensing With the Diamond Norm</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.</description><subject>Compressed sensing</subject><subject>Context</subject><subject>Diamond</subject><subject>Information theory</subject><subject>inverse problems</subject><subject>Linear matrix inequalities</subject><subject>Matrix</subject><subject>Measurement</subject><subject>Norms</subject><subject>Quantum mechanics</subject><subject>state estimation</subject><subject>system recovery</subject><subject>Tensile stress</subject><subject>Tomography</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFbvgpeA59SZ3dnt5ijRaqHowYrHJU0mNsUkdTcV_PduaXEu88H7zgyPENcIE0TI7pbz5UQCmok0YDTAiRih1tM0M5pOxQgAbZoR2XNxEcImtqRRjoSct1vf_zTdZ5L3seQQuEreuAv70UczrJNhzclDU7R9VyUvvW8vxVldfAW-OuaxeJ89LvPndPH6NM_vF2lJYIeUrC0lEpDM1KpWBrOyAlaqQkajTBnDWGv0yoIiVIWqyegCK9Z1JssVqbG4PeyND37vOAxu0-98F086tKSmhpSyUQUHVen7EDzXbuubtvC_DsHtybhIxu3JuCOZaLk5WBpm_pdPtZEarPoDw7Nc6g</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Kliesch, Martin</creator><creator>Kueng, Richard</creator><creator>Eisert, Jens</creator><creator>Gross, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-8009-0549</orcidid></search><sort><creationdate>20161201</creationdate><title>Improving Compressed Sensing With the Diamond Norm</title><author>Kliesch, Martin ; Kueng, Richard ; Eisert, Jens ; Gross, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-488c21404293bf3619cd0e33d1e1636cccc68865b803413a3f465a1de5f92cb43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Compressed sensing</topic><topic>Context</topic><topic>Diamond</topic><topic>Information theory</topic><topic>inverse problems</topic><topic>Linear matrix inequalities</topic><topic>Matrix</topic><topic>Measurement</topic><topic>Norms</topic><topic>Quantum mechanics</topic><topic>state estimation</topic><topic>system recovery</topic><topic>Tensile stress</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kliesch, Martin</creatorcontrib><creatorcontrib>Kueng, Richard</creatorcontrib><creatorcontrib>Eisert, Jens</creatorcontrib><creatorcontrib>Gross, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kliesch, Martin</au><au>Kueng, Richard</au><au>Eisert, Jens</au><au>Gross, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving Compressed Sensing With the Diamond Norm</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>62</volume><issue>12</issue><spage>7445</spage><epage>7463</epage><pages>7445-7463</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>In low-rank matrix recovery, one aims to reconstruct a low-rank matrix from a minimal number of linear measurements. Within the paradigm of compressed sensing, this is made computationally efficient by minimizing the nuclear norm as a convex surrogate for rank. In this paper, we identify an improved regularizer based on the so-called diamond norm, a concept imported from quantum information theory. We show that-for a class of matrices saturating a certain norm inequality-the descent cone of the diamond norm is contained in that of the nuclear norm. This suggests superior reconstruction properties for these matrices. We explicitly characterize this set of matrices. Moreover, we demonstrate numerically that the diamond norm indeed outperforms the nuclear norm in a number of relevant applications: These include signal analysis tasks, such as blind matrix deconvolution or the retrieval of certain unitary basis changes, as well as the quantum information problem of process tomography with random measurements. The diamond norm is defined for matrices that can be interpreted as order-4 tensors and it turns out that the above condition depends crucially on that tensorial structure. In this sense, this paper touches on an aspect of the notoriously difficult tensor completion problem.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2016.2606500</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8009-0549</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2016-12, Vol.62 (12), p.7445-7463
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_1843764338
source IEEE Electronic Library (IEL)
subjects Compressed sensing
Context
Diamond
Information theory
inverse problems
Linear matrix inequalities
Matrix
Measurement
Norms
Quantum mechanics
state estimation
system recovery
Tensile stress
Tomography
title Improving Compressed Sensing With the Diamond Norm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T02%3A46%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20Compressed%20Sensing%20With%20the%20Diamond%20Norm&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Kliesch,%20Martin&rft.date=2016-12-01&rft.volume=62&rft.issue=12&rft.spage=7445&rft.epage=7463&rft.pages=7445-7463&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2016.2606500&rft_dat=%3Cproquest_RIE%3E4262639701%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1843764338&rft_id=info:pmid/&rft_ieee_id=7562508&rfr_iscdi=true