Water-based single-flow mixing condensation particle counter
A novel water-based condensation particle counter has been developed using a patented, single-flow mixing (SFM) condenser that permits a conventional thermal approach of using a hot saturator followed by a cold condenser to activate and grow particles for counting with an optical detector. A computa...
Gespeichert in:
Veröffentlicht in: | Aerosol science and technology 2016-12, Vol.50 (12), p.1320-1326 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1326 |
---|---|
container_issue | 12 |
container_start_page | 1320 |
container_title | Aerosol science and technology |
container_volume | 50 |
creator | Romay, Francisco J. Collins, Aaron M. Dick, William D. Li, Lin Fandrey, Chris W. Liu, Benjamin Y. H. |
description | A novel water-based condensation particle counter has been developed using a patented, single-flow mixing (SFM) condenser that permits a conventional thermal approach of using a hot saturator followed by a cold condenser to activate and grow particles for counting with an optical detector. A computational fluid dynamics (CFD) model of the internal flow, temperature, and vapor profiles was used to predict the effectiveness of the SFM condenser. Using the results from the CFD model, the counting efficiency was numerically calculated for pure water droplets, and the CPC cut-point (i.e., 50% counting efficiency) was predicted to be 8.3 nm. The experimental performance of the new CPC was measured with differential mobility analyzer-classified, monodisperse particles. The measured cut-points were 8.2 nm for Ag particles and 3.9 nm for NaCl particles. The reduction in the cut-point for NaCl is the result of a compound effect: water uptake by NaCl particles, which increases their size before entering into the growth section (condenser), and the reduction of the equilibrium vapor pressure of water over NaCl-water droplets, resulting in a decrease of the activation diameter.
Copyright © 2016 American Association for Aerosol Research |
doi_str_mv | 10.1080/02786826.2016.1222510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1842539908</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4259456641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c488t-7fec330ad4c58f33618d1d56902b25323fbd57aab90e6a478716996d856a4f143</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKs_QVjwnJpJNtkseFCKX1DwongM2U0iW7ZJTXap_fdmab16GmZ43nfgQegayAKIJLeEVlJIKhaUgFgApZQDOUEz4BRwxaQ8RbOJwRN0ji5SWhNCoKIwQ3eferARNzpZU6TOf_UWuz7sik33k7eiDd5Yn_TQBV9sdRy6trf5Ovocu0RnTvfJXh3nHH08Pb4vX_Dq7fl1-bDCbSnlgCtnW8aINmXLpWNMgDRguKgJbShnlLnG8ErrpiZW6LKSFYi6FkbyvDko2RzdHHq3MXyPNg1qHcbo80sFsswVdU1kpviBamNIKVqntrHb6LhXQNQkSv2JUpModRSVc_eHXOddiBu9C7E3atD7PkQXtW-7pNj_Fb9f725G</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1842539908</pqid></control><display><type>article</type><title>Water-based single-flow mixing condensation particle counter</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Romay, Francisco J. ; Collins, Aaron M. ; Dick, William D. ; Li, Lin ; Fandrey, Chris W. ; Liu, Benjamin Y. H.</creator><creatorcontrib>Romay, Francisco J. ; Collins, Aaron M. ; Dick, William D. ; Li, Lin ; Fandrey, Chris W. ; Liu, Benjamin Y. H.</creatorcontrib><description>A novel water-based condensation particle counter has been developed using a patented, single-flow mixing (SFM) condenser that permits a conventional thermal approach of using a hot saturator followed by a cold condenser to activate and grow particles for counting with an optical detector. A computational fluid dynamics (CFD) model of the internal flow, temperature, and vapor profiles was used to predict the effectiveness of the SFM condenser. Using the results from the CFD model, the counting efficiency was numerically calculated for pure water droplets, and the CPC cut-point (i.e., 50% counting efficiency) was predicted to be 8.3 nm. The experimental performance of the new CPC was measured with differential mobility analyzer-classified, monodisperse particles. The measured cut-points were 8.2 nm for Ag particles and 3.9 nm for NaCl particles. The reduction in the cut-point for NaCl is the result of a compound effect: water uptake by NaCl particles, which increases their size before entering into the growth section (condenser), and the reduction of the equilibrium vapor pressure of water over NaCl-water droplets, resulting in a decrease of the activation diameter.
Copyright © 2016 American Association for Aerosol Research</description><identifier>ISSN: 0278-6826</identifier><identifier>EISSN: 1521-7388</identifier><identifier>DOI: 10.1080/02786826.2016.1222510</identifier><language>eng</language><publisher>New York: Taylor & Francis</publisher><subject>Aerosol research ; Aerosols ; Condensation ; Fluid dynamics ; Hydrodynamics ; Jian Wang ; Particle counters ; Sodium chloride ; Vapor pressure ; Water uptake</subject><ispartof>Aerosol science and technology, 2016-12, Vol.50 (12), p.1320-1326</ispartof><rights>2016 American Association for Aerosol Research 2016</rights><rights>2016 American Association for Aerosol Research</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c488t-7fec330ad4c58f33618d1d56902b25323fbd57aab90e6a478716996d856a4f143</citedby><cites>FETCH-LOGICAL-c488t-7fec330ad4c58f33618d1d56902b25323fbd57aab90e6a478716996d856a4f143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Romay, Francisco J.</creatorcontrib><creatorcontrib>Collins, Aaron M.</creatorcontrib><creatorcontrib>Dick, William D.</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Fandrey, Chris W.</creatorcontrib><creatorcontrib>Liu, Benjamin Y. H.</creatorcontrib><title>Water-based single-flow mixing condensation particle counter</title><title>Aerosol science and technology</title><description>A novel water-based condensation particle counter has been developed using a patented, single-flow mixing (SFM) condenser that permits a conventional thermal approach of using a hot saturator followed by a cold condenser to activate and grow particles for counting with an optical detector. A computational fluid dynamics (CFD) model of the internal flow, temperature, and vapor profiles was used to predict the effectiveness of the SFM condenser. Using the results from the CFD model, the counting efficiency was numerically calculated for pure water droplets, and the CPC cut-point (i.e., 50% counting efficiency) was predicted to be 8.3 nm. The experimental performance of the new CPC was measured with differential mobility analyzer-classified, monodisperse particles. The measured cut-points were 8.2 nm for Ag particles and 3.9 nm for NaCl particles. The reduction in the cut-point for NaCl is the result of a compound effect: water uptake by NaCl particles, which increases their size before entering into the growth section (condenser), and the reduction of the equilibrium vapor pressure of water over NaCl-water droplets, resulting in a decrease of the activation diameter.
Copyright © 2016 American Association for Aerosol Research</description><subject>Aerosol research</subject><subject>Aerosols</subject><subject>Condensation</subject><subject>Fluid dynamics</subject><subject>Hydrodynamics</subject><subject>Jian Wang</subject><subject>Particle counters</subject><subject>Sodium chloride</subject><subject>Vapor pressure</subject><subject>Water uptake</subject><issn>0278-6826</issn><issn>1521-7388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKs_QVjwnJpJNtkseFCKX1DwongM2U0iW7ZJTXap_fdmab16GmZ43nfgQegayAKIJLeEVlJIKhaUgFgApZQDOUEz4BRwxaQ8RbOJwRN0ji5SWhNCoKIwQ3eferARNzpZU6TOf_UWuz7sik33k7eiDd5Yn_TQBV9sdRy6trf5Ovocu0RnTvfJXh3nHH08Pb4vX_Dq7fl1-bDCbSnlgCtnW8aINmXLpWNMgDRguKgJbShnlLnG8ErrpiZW6LKSFYi6FkbyvDko2RzdHHq3MXyPNg1qHcbo80sFsswVdU1kpviBamNIKVqntrHb6LhXQNQkSv2JUpModRSVc_eHXOddiBu9C7E3atD7PkQXtW-7pNj_Fb9f725G</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Romay, Francisco J.</creator><creator>Collins, Aaron M.</creator><creator>Dick, William D.</creator><creator>Li, Lin</creator><creator>Fandrey, Chris W.</creator><creator>Liu, Benjamin Y. H.</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7TG</scope><scope>8FD</scope><scope>FR3</scope><scope>KL.</scope></search><sort><creationdate>20161201</creationdate><title>Water-based single-flow mixing condensation particle counter</title><author>Romay, Francisco J. ; Collins, Aaron M. ; Dick, William D. ; Li, Lin ; Fandrey, Chris W. ; Liu, Benjamin Y. H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c488t-7fec330ad4c58f33618d1d56902b25323fbd57aab90e6a478716996d856a4f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Aerosol research</topic><topic>Aerosols</topic><topic>Condensation</topic><topic>Fluid dynamics</topic><topic>Hydrodynamics</topic><topic>Jian Wang</topic><topic>Particle counters</topic><topic>Sodium chloride</topic><topic>Vapor pressure</topic><topic>Water uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Romay, Francisco J.</creatorcontrib><creatorcontrib>Collins, Aaron M.</creatorcontrib><creatorcontrib>Dick, William D.</creatorcontrib><creatorcontrib>Li, Lin</creatorcontrib><creatorcontrib>Fandrey, Chris W.</creatorcontrib><creatorcontrib>Liu, Benjamin Y. H.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Aerosol science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Romay, Francisco J.</au><au>Collins, Aaron M.</au><au>Dick, William D.</au><au>Li, Lin</au><au>Fandrey, Chris W.</au><au>Liu, Benjamin Y. H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Water-based single-flow mixing condensation particle counter</atitle><jtitle>Aerosol science and technology</jtitle><date>2016-12-01</date><risdate>2016</risdate><volume>50</volume><issue>12</issue><spage>1320</spage><epage>1326</epage><pages>1320-1326</pages><issn>0278-6826</issn><eissn>1521-7388</eissn><abstract>A novel water-based condensation particle counter has been developed using a patented, single-flow mixing (SFM) condenser that permits a conventional thermal approach of using a hot saturator followed by a cold condenser to activate and grow particles for counting with an optical detector. A computational fluid dynamics (CFD) model of the internal flow, temperature, and vapor profiles was used to predict the effectiveness of the SFM condenser. Using the results from the CFD model, the counting efficiency was numerically calculated for pure water droplets, and the CPC cut-point (i.e., 50% counting efficiency) was predicted to be 8.3 nm. The experimental performance of the new CPC was measured with differential mobility analyzer-classified, monodisperse particles. The measured cut-points were 8.2 nm for Ag particles and 3.9 nm for NaCl particles. The reduction in the cut-point for NaCl is the result of a compound effect: water uptake by NaCl particles, which increases their size before entering into the growth section (condenser), and the reduction of the equilibrium vapor pressure of water over NaCl-water droplets, resulting in a decrease of the activation diameter.
Copyright © 2016 American Association for Aerosol Research</abstract><cop>New York</cop><pub>Taylor & Francis</pub><doi>10.1080/02786826.2016.1222510</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-6826 |
ispartof | Aerosol science and technology, 2016-12, Vol.50 (12), p.1320-1326 |
issn | 0278-6826 1521-7388 |
language | eng |
recordid | cdi_proquest_journals_1842539908 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Aerosol research Aerosols Condensation Fluid dynamics Hydrodynamics Jian Wang Particle counters Sodium chloride Vapor pressure Water uptake |
title | Water-based single-flow mixing condensation particle counter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A48%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Water-based%20single-flow%20mixing%20condensation%20particle%20counter&rft.jtitle=Aerosol%20science%20and%20technology&rft.au=Romay,%20Francisco%20J.&rft.date=2016-12-01&rft.volume=50&rft.issue=12&rft.spage=1320&rft.epage=1326&rft.pages=1320-1326&rft.issn=0278-6826&rft.eissn=1521-7388&rft_id=info:doi/10.1080/02786826.2016.1222510&rft_dat=%3Cproquest_cross%3E4259456641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1842539908&rft_id=info:pmid/&rfr_iscdi=true |