Factorization of singular integral operators with a Carleman backward shift: The case of bounded measurable coefficients

In this paper, we generalize our recent results concerning scalar singular integral operators with a Carleman backward shift, allowing more general coefficients, bounded measurable functions on the unit circle. Our aim is to obtain an operator factorization for singular integral operators with a bac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal d'analyse mathématique (Jerusalem) 2009, Vol.107 (1), p.1-37
Hauptverfasser: Kravchenko, V. G., Lebre, A. B., Rodríguez, J. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 1
container_start_page 1
container_title Journal d'analyse mathématique (Jerusalem)
container_volume 107
creator Kravchenko, V. G.
Lebre, A. B.
Rodríguez, J. S.
description In this paper, we generalize our recent results concerning scalar singular integral operators with a Carleman backward shift, allowing more general coefficients, bounded measurable functions on the unit circle. Our aim is to obtain an operator factorization for singular integral operators with a backward shift and bounded measurable coefficients, from which such Fredholm characteristics as the kernel and the cokernel can be described. The main tool is the factorization of matrix functions. In the course of the analysis performed, we obtain several useful representations, which allow us to characterize completely the set of invertible operators in that class, thus providing explicit examples of such operators
doi_str_mv 10.1007/s11854-009-0001-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1841151178</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4254070911</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-428f0f920a0fe8e7b13bb9d034cfe1022b9bab78b499d504b2942dff3fef3b0d3</originalsourceid><addsrcrecordid>eNp1kLtOxDAQRS0EEsvjA-gsUQdmnGTj0KEVLwmJBmprnIx3Ddl4sRPx-HqyWgoaitEUc-4d6QhxhnCBANVlQtRlkQHU0wBmek_MsJyXmS5zvS9mAAqzal7BoThK6RWgLOtczcTnLTVDiP6bBh96GZxMvl-OHUXp-4GXkToZNhxpgpL88MNKklxQ7HhNvbTUvH1QbGVaeTdcyecVy4YSb3tsGPuWW7lmSmMk202nwM75xnM_pBNx4KhLfPq7j8XL7c3z4j57fLp7WFw_Zk2O8yErlHbgagUEjjVXFnNr6xbyonGMoJStLdlK26Ku2xIKq-pCtc7ljl1uoc2PxfmudxPD-8hpMK9hjP300qAuEEvESk8U7qgmhpQiO7OJfk3xyyCYrWCzE2wmwWYr2GwzapdJE9svOf5p_jf0A-L-gCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1841151178</pqid></control><display><type>article</type><title>Factorization of singular integral operators with a Carleman backward shift: The case of bounded measurable coefficients</title><source>Springer Nature - Complete Springer Journals</source><creator>Kravchenko, V. G. ; Lebre, A. B. ; Rodríguez, J. S.</creator><creatorcontrib>Kravchenko, V. G. ; Lebre, A. B. ; Rodríguez, J. S.</creatorcontrib><description>In this paper, we generalize our recent results concerning scalar singular integral operators with a Carleman backward shift, allowing more general coefficients, bounded measurable functions on the unit circle. Our aim is to obtain an operator factorization for singular integral operators with a backward shift and bounded measurable coefficients, from which such Fredholm characteristics as the kernel and the cokernel can be described. The main tool is the factorization of matrix functions. In the course of the analysis performed, we obtain several useful representations, which allow us to characterize completely the set of invertible operators in that class, thus providing explicit examples of such operators</description><identifier>ISSN: 0021-7670</identifier><identifier>EISSN: 1565-8538</identifier><identifier>DOI: 10.1007/s11854-009-0001-8</identifier><language>eng</language><publisher>Heidelberg: The Hebrew University Magnes Press</publisher><subject>Abstract Harmonic Analysis ; Analysis ; Dynamical Systems and Ergodic Theory ; Functional Analysis ; Mathematics ; Mathematics and Statistics ; Partial Differential Equations</subject><ispartof>Journal d'analyse mathématique (Jerusalem), 2009, Vol.107 (1), p.1-37</ispartof><rights>Hebrew University Magnes Press 2009</rights><rights>Journal d'Analyse Mathematique is a copyright of Springer, 2009.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-428f0f920a0fe8e7b13bb9d034cfe1022b9bab78b499d504b2942dff3fef3b0d3</citedby><cites>FETCH-LOGICAL-c316t-428f0f920a0fe8e7b13bb9d034cfe1022b9bab78b499d504b2942dff3fef3b0d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11854-009-0001-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11854-009-0001-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Kravchenko, V. G.</creatorcontrib><creatorcontrib>Lebre, A. B.</creatorcontrib><creatorcontrib>Rodríguez, J. S.</creatorcontrib><title>Factorization of singular integral operators with a Carleman backward shift: The case of bounded measurable coefficients</title><title>Journal d'analyse mathématique (Jerusalem)</title><addtitle>J Anal Math</addtitle><description>In this paper, we generalize our recent results concerning scalar singular integral operators with a Carleman backward shift, allowing more general coefficients, bounded measurable functions on the unit circle. Our aim is to obtain an operator factorization for singular integral operators with a backward shift and bounded measurable coefficients, from which such Fredholm characteristics as the kernel and the cokernel can be described. The main tool is the factorization of matrix functions. In the course of the analysis performed, we obtain several useful representations, which allow us to characterize completely the set of invertible operators in that class, thus providing explicit examples of such operators</description><subject>Abstract Harmonic Analysis</subject><subject>Analysis</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Functional Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Partial Differential Equations</subject><issn>0021-7670</issn><issn>1565-8538</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kLtOxDAQRS0EEsvjA-gsUQdmnGTj0KEVLwmJBmprnIx3Ddl4sRPx-HqyWgoaitEUc-4d6QhxhnCBANVlQtRlkQHU0wBmek_MsJyXmS5zvS9mAAqzal7BoThK6RWgLOtczcTnLTVDiP6bBh96GZxMvl-OHUXp-4GXkToZNhxpgpL88MNKklxQ7HhNvbTUvH1QbGVaeTdcyecVy4YSb3tsGPuWW7lmSmMk202nwM75xnM_pBNx4KhLfPq7j8XL7c3z4j57fLp7WFw_Zk2O8yErlHbgagUEjjVXFnNr6xbyonGMoJStLdlK26Ku2xIKq-pCtc7ljl1uoc2PxfmudxPD-8hpMK9hjP300qAuEEvESk8U7qgmhpQiO7OJfk3xyyCYrWCzE2wmwWYr2GwzapdJE9svOf5p_jf0A-L-gCg</recordid><startdate>2009</startdate><enddate>2009</enddate><creator>Kravchenko, V. G.</creator><creator>Lebre, A. B.</creator><creator>Rodríguez, J. S.</creator><general>The Hebrew University Magnes Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>2009</creationdate><title>Factorization of singular integral operators with a Carleman backward shift: The case of bounded measurable coefficients</title><author>Kravchenko, V. G. ; Lebre, A. B. ; Rodríguez, J. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-428f0f920a0fe8e7b13bb9d034cfe1022b9bab78b499d504b2942dff3fef3b0d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Abstract Harmonic Analysis</topic><topic>Analysis</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Functional Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Partial Differential Equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kravchenko, V. G.</creatorcontrib><creatorcontrib>Lebre, A. B.</creatorcontrib><creatorcontrib>Rodríguez, J. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kravchenko, V. G.</au><au>Lebre, A. B.</au><au>Rodríguez, J. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Factorization of singular integral operators with a Carleman backward shift: The case of bounded measurable coefficients</atitle><jtitle>Journal d'analyse mathématique (Jerusalem)</jtitle><stitle>J Anal Math</stitle><date>2009</date><risdate>2009</risdate><volume>107</volume><issue>1</issue><spage>1</spage><epage>37</epage><pages>1-37</pages><issn>0021-7670</issn><eissn>1565-8538</eissn><abstract>In this paper, we generalize our recent results concerning scalar singular integral operators with a Carleman backward shift, allowing more general coefficients, bounded measurable functions on the unit circle. Our aim is to obtain an operator factorization for singular integral operators with a backward shift and bounded measurable coefficients, from which such Fredholm characteristics as the kernel and the cokernel can be described. The main tool is the factorization of matrix functions. In the course of the analysis performed, we obtain several useful representations, which allow us to characterize completely the set of invertible operators in that class, thus providing explicit examples of such operators</abstract><cop>Heidelberg</cop><pub>The Hebrew University Magnes Press</pub><doi>10.1007/s11854-009-0001-8</doi><tpages>37</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-7670
ispartof Journal d'analyse mathématique (Jerusalem), 2009, Vol.107 (1), p.1-37
issn 0021-7670
1565-8538
language eng
recordid cdi_proquest_journals_1841151178
source Springer Nature - Complete Springer Journals
subjects Abstract Harmonic Analysis
Analysis
Dynamical Systems and Ergodic Theory
Functional Analysis
Mathematics
Mathematics and Statistics
Partial Differential Equations
title Factorization of singular integral operators with a Carleman backward shift: The case of bounded measurable coefficients
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T16%3A13%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Factorization%20of%20singular%20integral%20operators%20with%20a%20Carleman%20backward%20shift:%20The%20case%20of%20bounded%20measurable%20coefficients&rft.jtitle=Journal%20d'analyse%20math%C3%A9matique%20(Jerusalem)&rft.au=Kravchenko,%20V.%20G.&rft.date=2009&rft.volume=107&rft.issue=1&rft.spage=1&rft.epage=37&rft.pages=1-37&rft.issn=0021-7670&rft.eissn=1565-8538&rft_id=info:doi/10.1007/s11854-009-0001-8&rft_dat=%3Cproquest_cross%3E4254070911%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1841151178&rft_id=info:pmid/&rfr_iscdi=true