The contact properties of naturally occurring geologic materials: contact law development
This effort develops contact laws and presents material-specific parameters for those laws for several granular geologic and two manufactured materials. The normal contact law includes a Hertzian elastic term and a linear delayed elastic (anelastic) term which accounts for hysteresis. The shear cont...
Gespeichert in:
Veröffentlicht in: | Granular matter 2017-02, Vol.19 (1), p.1, Article 5 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Granular matter |
container_volume | 19 |
creator | Cole, David M. Hopkins, Mark A. |
description | This effort develops contact laws and presents material-specific parameters for those laws for several granular geologic and two manufactured materials. The normal contact law includes a Hertzian elastic term and a linear delayed elastic (anelastic) term which accounts for hysteresis. The shear contact law contains terms for elastic and anelastic deformation and an additional nonlinear term for inelastic (permanent) deformation that acts above an experimentally determined threshold ratio of shear to normal force at the contact. The contact laws have been formulated for arbitrary, quasistatic loading paths and are shown to capture the behavior observed in grain-to-grain contact experiments under monotonic and cyclic loading. The findings are based on the results of previously published normal and shear contact experiments on four naturally occurring quartz sands, magnesite (limestone), crushed and ball-milled gneiss, ooids (precipitated calcium carbonate spheroids), glass beads and a synthetic (Delrin). A companion paper presents the implementation of these laws in a discrete element simulation of a standard geotechnical triaxial cell and validates the simulations with physical triaxial experiments. |
doi_str_mv | 10.1007/s10035-016-0683-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1840782354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4252476991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-68bb98a2b79d7bb53a19128e90547347445963061158d44715bc996e83c4c7f63</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM8-1NFr9A8LIePIU0m65duk1NUmX_vS27iBcvMwPzPvPxInQJ5BoIkTdpjJQXBERBhKIFO0IzYJQVUlBxfKg5KeEUnaW0IQS4BjlD78sPj13osnUZ9zH0PubGJxxq3Nk8RNu2OxycG2JsujVe-9CGdePw1mYfG9um21-6td945b98G_qt7_I5OqnHvr845Dl6e7hfLp6Kl9fH58XdS-EoiFwIVVVa2bKSeiWrilMLGkrlNeFMUiYZ41pQIgC4WjEmgVdOa-EVdczJWtA5utrPHa__HHzKZhOG2I0rDShGpCopZ6MK9ioXQ0rR16aPzdbGnQFiJgfN3kEzOmgmB83ElHsm9dPzPv6Z_C_0A6Yocxc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840782354</pqid></control><display><type>article</type><title>The contact properties of naturally occurring geologic materials: contact law development</title><source>SpringerNature Journals</source><creator>Cole, David M. ; Hopkins, Mark A.</creator><creatorcontrib>Cole, David M. ; Hopkins, Mark A.</creatorcontrib><description>This effort develops contact laws and presents material-specific parameters for those laws for several granular geologic and two manufactured materials. The normal contact law includes a Hertzian elastic term and a linear delayed elastic (anelastic) term which accounts for hysteresis. The shear contact law contains terms for elastic and anelastic deformation and an additional nonlinear term for inelastic (permanent) deformation that acts above an experimentally determined threshold ratio of shear to normal force at the contact. The contact laws have been formulated for arbitrary, quasistatic loading paths and are shown to capture the behavior observed in grain-to-grain contact experiments under monotonic and cyclic loading. The findings are based on the results of previously published normal and shear contact experiments on four naturally occurring quartz sands, magnesite (limestone), crushed and ball-milled gneiss, ooids (precipitated calcium carbonate spheroids), glass beads and a synthetic (Delrin). A companion paper presents the implementation of these laws in a discrete element simulation of a standard geotechnical triaxial cell and validates the simulations with physical triaxial experiments.</description><identifier>ISSN: 1434-5021</identifier><identifier>EISSN: 1434-7636</identifier><identifier>DOI: 10.1007/s10035-016-0683-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Fluids and Microfluidics ; Contact problems ; Deformation ; Engineering Fluid Dynamics ; Engineering Thermodynamics ; Foundations ; Geoengineering ; Granular materials ; Heat and Mass Transfer ; Hydraulics ; Industrial Chemistry/Chemical Engineering ; Materials Science ; Mechanics ; Original Paper ; Physics ; Physics and Astronomy ; Shear strength ; Soft and Granular Matter</subject><ispartof>Granular matter, 2017-02, Vol.19 (1), p.1, Article 5</ispartof><rights>Springer-Verlag Berlin Heidelberg (outside the USA) 2016</rights><rights>Granular Matter is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-68bb98a2b79d7bb53a19128e90547347445963061158d44715bc996e83c4c7f63</citedby><cites>FETCH-LOGICAL-c316t-68bb98a2b79d7bb53a19128e90547347445963061158d44715bc996e83c4c7f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10035-016-0683-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10035-016-0683-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cole, David M.</creatorcontrib><creatorcontrib>Hopkins, Mark A.</creatorcontrib><title>The contact properties of naturally occurring geologic materials: contact law development</title><title>Granular matter</title><addtitle>Granular Matter</addtitle><description>This effort develops contact laws and presents material-specific parameters for those laws for several granular geologic and two manufactured materials. The normal contact law includes a Hertzian elastic term and a linear delayed elastic (anelastic) term which accounts for hysteresis. The shear contact law contains terms for elastic and anelastic deformation and an additional nonlinear term for inelastic (permanent) deformation that acts above an experimentally determined threshold ratio of shear to normal force at the contact. The contact laws have been formulated for arbitrary, quasistatic loading paths and are shown to capture the behavior observed in grain-to-grain contact experiments under monotonic and cyclic loading. The findings are based on the results of previously published normal and shear contact experiments on four naturally occurring quartz sands, magnesite (limestone), crushed and ball-milled gneiss, ooids (precipitated calcium carbonate spheroids), glass beads and a synthetic (Delrin). A companion paper presents the implementation of these laws in a discrete element simulation of a standard geotechnical triaxial cell and validates the simulations with physical triaxial experiments.</description><subject>Complex Fluids and Microfluidics</subject><subject>Contact problems</subject><subject>Deformation</subject><subject>Engineering Fluid Dynamics</subject><subject>Engineering Thermodynamics</subject><subject>Foundations</subject><subject>Geoengineering</subject><subject>Granular materials</subject><subject>Heat and Mass Transfer</subject><subject>Hydraulics</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Materials Science</subject><subject>Mechanics</subject><subject>Original Paper</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Shear strength</subject><subject>Soft and Granular Matter</subject><issn>1434-5021</issn><issn>1434-7636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9VM8-1NFr9A8LIePIU0m65duk1NUmX_vS27iBcvMwPzPvPxInQJ5BoIkTdpjJQXBERBhKIFO0IzYJQVUlBxfKg5KeEUnaW0IQS4BjlD78sPj13osnUZ9zH0PubGJxxq3Nk8RNu2OxycG2JsujVe-9CGdePw1mYfG9um21-6td945b98G_qt7_I5OqnHvr845Dl6e7hfLp6Kl9fH58XdS-EoiFwIVVVa2bKSeiWrilMLGkrlNeFMUiYZ41pQIgC4WjEmgVdOa-EVdczJWtA5utrPHa__HHzKZhOG2I0rDShGpCopZ6MK9ioXQ0rR16aPzdbGnQFiJgfN3kEzOmgmB83ElHsm9dPzPv6Z_C_0A6Yocxc</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Cole, David M.</creator><creator>Hopkins, Mark A.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>KR7</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20170201</creationdate><title>The contact properties of naturally occurring geologic materials: contact law development</title><author>Cole, David M. ; Hopkins, Mark A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-68bb98a2b79d7bb53a19128e90547347445963061158d44715bc996e83c4c7f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Fluids and Microfluidics</topic><topic>Contact problems</topic><topic>Deformation</topic><topic>Engineering Fluid Dynamics</topic><topic>Engineering Thermodynamics</topic><topic>Foundations</topic><topic>Geoengineering</topic><topic>Granular materials</topic><topic>Heat and Mass Transfer</topic><topic>Hydraulics</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Materials Science</topic><topic>Mechanics</topic><topic>Original Paper</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Shear strength</topic><topic>Soft and Granular Matter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cole, David M.</creatorcontrib><creatorcontrib>Hopkins, Mark A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Granular matter</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cole, David M.</au><au>Hopkins, Mark A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The contact properties of naturally occurring geologic materials: contact law development</atitle><jtitle>Granular matter</jtitle><stitle>Granular Matter</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>19</volume><issue>1</issue><spage>1</spage><pages>1-</pages><artnum>5</artnum><issn>1434-5021</issn><eissn>1434-7636</eissn><abstract>This effort develops contact laws and presents material-specific parameters for those laws for several granular geologic and two manufactured materials. The normal contact law includes a Hertzian elastic term and a linear delayed elastic (anelastic) term which accounts for hysteresis. The shear contact law contains terms for elastic and anelastic deformation and an additional nonlinear term for inelastic (permanent) deformation that acts above an experimentally determined threshold ratio of shear to normal force at the contact. The contact laws have been formulated for arbitrary, quasistatic loading paths and are shown to capture the behavior observed in grain-to-grain contact experiments under monotonic and cyclic loading. The findings are based on the results of previously published normal and shear contact experiments on four naturally occurring quartz sands, magnesite (limestone), crushed and ball-milled gneiss, ooids (precipitated calcium carbonate spheroids), glass beads and a synthetic (Delrin). A companion paper presents the implementation of these laws in a discrete element simulation of a standard geotechnical triaxial cell and validates the simulations with physical triaxial experiments.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10035-016-0683-4</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1434-5021 |
ispartof | Granular matter, 2017-02, Vol.19 (1), p.1, Article 5 |
issn | 1434-5021 1434-7636 |
language | eng |
recordid | cdi_proquest_journals_1840782354 |
source | SpringerNature Journals |
subjects | Complex Fluids and Microfluidics Contact problems Deformation Engineering Fluid Dynamics Engineering Thermodynamics Foundations Geoengineering Granular materials Heat and Mass Transfer Hydraulics Industrial Chemistry/Chemical Engineering Materials Science Mechanics Original Paper Physics Physics and Astronomy Shear strength Soft and Granular Matter |
title | The contact properties of naturally occurring geologic materials: contact law development |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20contact%20properties%20of%20naturally%20occurring%20geologic%20materials:%20contact%20law%20development&rft.jtitle=Granular%20matter&rft.au=Cole,%20David%20M.&rft.date=2017-02-01&rft.volume=19&rft.issue=1&rft.spage=1&rft.pages=1-&rft.artnum=5&rft.issn=1434-5021&rft.eissn=1434-7636&rft_id=info:doi/10.1007/s10035-016-0683-4&rft_dat=%3Cproquest_cross%3E4252476991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1840782354&rft_id=info:pmid/&rfr_iscdi=true |