An approach to vector geometry

Some ideas of how vector analytic geometry might be developed for high school classes

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Mathematics teacher 1963-05, Vol.56 (5), p.290-297
1. Verfasser: TROYER, ROBERT J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 297
container_issue 5
container_start_page 290
container_title The Mathematics teacher
container_volume 56
creator TROYER, ROBERT J.
description Some ideas of how vector analytic geometry might be developed for high school classes
doi_str_mv 10.5951/MT.56.5.0290
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1840031832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27956822</jstor_id><sourcerecordid>27956822</sourcerecordid><originalsourceid>FETCH-LOGICAL-c872-1df17b836abf3d93d94536bf8c0923df4ab7b8a333ac0f5672e11f50970554a33</originalsourceid><addsrcrecordid>eNo9kE1LxDAQhoMoWFdvXpWCV1snSSdNjsviF-zipfeQpola3G1NusL-e7NUHAYGZh7mnXkJuaZQokL6sGlKFCWWwBSckIxxDgWgZKckA2BYYC3UObmIsYcUlYSM3C53uRnHMBj7kU9D_uPsNIT83Q1bN4XDJTnz5iu6q7-6IM3TY7N6KdZvz6-r5bqwsmYF7TytW8mFaT3vVMoKuWi9tKAY73xl2jQ2nHNjwaOomaPUI6gaEKvUX5C7eW065Hvv4qT7YR92SVFTWQFwKjlL1P1M2TDEGJzXY_jcmnDQFPTRAL1pNAqN-mhAwm9mvI_ppX-W1QqFZIz_AmZxVLE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1840031832</pqid></control><display><type>article</type><title>An approach to vector geometry</title><source>Jstor Complete Legacy</source><source>Periodicals Index Online</source><source>JSTOR Mathematics &amp; Statistics</source><creator>TROYER, ROBERT J.</creator><creatorcontrib>TROYER, ROBERT J.</creatorcontrib><description>Some ideas of how vector analytic geometry might be developed for high school classes</description><identifier>ISSN: 0025-5769</identifier><identifier>EISSN: 2330-0582</identifier><identifier>DOI: 10.5951/MT.56.5.0290</identifier><language>eng</language><publisher>Reston: National Council of Teachers of Mathematics</publisher><subject>Coordinate systems ; Dot product of vectors ; Geometric planes ; Geometry ; Line segments ; Mathematical theorems ; Mathematical vectors ; Ordered pairs ; Parallel lines ; Real numbers</subject><ispartof>The Mathematics teacher, 1963-05, Vol.56 (5), p.290-297</ispartof><rights>Copyright © 1963 National Council of Teachers of Mathematics</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27956822$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/27956822$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,828,27846,27901,27902,57992,57996,58225,58229</link.rule.ids></links><search><creatorcontrib>TROYER, ROBERT J.</creatorcontrib><title>An approach to vector geometry</title><title>The Mathematics teacher</title><description>Some ideas of how vector analytic geometry might be developed for high school classes</description><subject>Coordinate systems</subject><subject>Dot product of vectors</subject><subject>Geometric planes</subject><subject>Geometry</subject><subject>Line segments</subject><subject>Mathematical theorems</subject><subject>Mathematical vectors</subject><subject>Ordered pairs</subject><subject>Parallel lines</subject><subject>Real numbers</subject><issn>0025-5769</issn><issn>2330-0582</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1963</creationdate><recordtype>article</recordtype><sourceid>K30</sourceid><recordid>eNo9kE1LxDAQhoMoWFdvXpWCV1snSSdNjsviF-zipfeQpola3G1NusL-e7NUHAYGZh7mnXkJuaZQokL6sGlKFCWWwBSckIxxDgWgZKckA2BYYC3UObmIsYcUlYSM3C53uRnHMBj7kU9D_uPsNIT83Q1bN4XDJTnz5iu6q7-6IM3TY7N6KdZvz6-r5bqwsmYF7TytW8mFaT3vVMoKuWi9tKAY73xl2jQ2nHNjwaOomaPUI6gaEKvUX5C7eW065Hvv4qT7YR92SVFTWQFwKjlL1P1M2TDEGJzXY_jcmnDQFPTRAL1pNAqN-mhAwm9mvI_ppX-W1QqFZIz_AmZxVLE</recordid><startdate>19630501</startdate><enddate>19630501</enddate><creator>TROYER, ROBERT J.</creator><general>National Council of Teachers of Mathematics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7WH</scope><scope>K30</scope><scope>PAAUG</scope><scope>PAWHS</scope><scope>PAWZZ</scope><scope>PAXOH</scope><scope>PBHAV</scope><scope>PBQSW</scope><scope>PBYQZ</scope><scope>PCIWU</scope><scope>PCMID</scope><scope>PCZJX</scope><scope>PDGRG</scope><scope>PDWWI</scope><scope>PETMR</scope><scope>PFVGT</scope><scope>PGXDX</scope><scope>PIHIL</scope><scope>PISVA</scope><scope>PJCTQ</scope><scope>PJTMS</scope><scope>PLCHJ</scope><scope>PMHAD</scope><scope>PNQDJ</scope><scope>POUND</scope><scope>PPLAD</scope><scope>PQAPC</scope><scope>PQCAN</scope><scope>PQCMW</scope><scope>PQEME</scope><scope>PQHKH</scope><scope>PQMID</scope><scope>PQNCT</scope><scope>PQNET</scope><scope>PQSCT</scope><scope>PQSET</scope><scope>PSVJG</scope><scope>PVMQY</scope><scope>PZGFC</scope></search><sort><creationdate>19630501</creationdate><title>An approach to vector geometry</title><author>TROYER, ROBERT J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c872-1df17b836abf3d93d94536bf8c0923df4ab7b8a333ac0f5672e11f50970554a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1963</creationdate><topic>Coordinate systems</topic><topic>Dot product of vectors</topic><topic>Geometric planes</topic><topic>Geometry</topic><topic>Line segments</topic><topic>Mathematical theorems</topic><topic>Mathematical vectors</topic><topic>Ordered pairs</topic><topic>Parallel lines</topic><topic>Real numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>TROYER, ROBERT J.</creatorcontrib><collection>CrossRef</collection><collection>Periodicals Index Online Segment 50</collection><collection>Periodicals Index Online</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - West</collection><collection>Primary Sources Access (Plan D) - International</collection><collection>Primary Sources Access &amp; Build (Plan A) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Midwest</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Northeast</collection><collection>Primary Sources Access (Plan D) - Southeast</collection><collection>Primary Sources Access (Plan D) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Southeast</collection><collection>Primary Sources Access (Plan D) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - UK / I</collection><collection>Primary Sources Access (Plan D) - Canada</collection><collection>Primary Sources Access (Plan D) - EMEALA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - North Central</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - International</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - International</collection><collection>Primary Sources Access (Plan D) - West</collection><collection>Periodicals Index Online Segments 1-50</collection><collection>Primary Sources Access (Plan D) - APAC</collection><collection>Primary Sources Access (Plan D) - Midwest</collection><collection>Primary Sources Access (Plan D) - MEA</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - Canada</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - EMEALA</collection><collection>Primary Sources Access &amp; Build (Plan A) - APAC</collection><collection>Primary Sources Access &amp; Build (Plan A) - Canada</collection><collection>Primary Sources Access &amp; Build (Plan A) - West</collection><collection>Primary Sources Access &amp; Build (Plan A) - EMEALA</collection><collection>Primary Sources Access (Plan D) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - Midwest</collection><collection>Primary Sources Access &amp; Build (Plan A) - North Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Northeast</collection><collection>Primary Sources Access &amp; Build (Plan A) - South Central</collection><collection>Primary Sources Access &amp; Build (Plan A) - Southeast</collection><collection>Primary Sources Access (Plan D) - UK / I</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - APAC</collection><collection>Primary Sources Access—Foundation Edition (Plan E) - MEA</collection><jtitle>The Mathematics teacher</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>TROYER, ROBERT J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An approach to vector geometry</atitle><jtitle>The Mathematics teacher</jtitle><date>1963-05-01</date><risdate>1963</risdate><volume>56</volume><issue>5</issue><spage>290</spage><epage>297</epage><pages>290-297</pages><issn>0025-5769</issn><eissn>2330-0582</eissn><abstract>Some ideas of how vector analytic geometry might be developed for high school classes</abstract><cop>Reston</cop><pub>National Council of Teachers of Mathematics</pub><doi>10.5951/MT.56.5.0290</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5769
ispartof The Mathematics teacher, 1963-05, Vol.56 (5), p.290-297
issn 0025-5769
2330-0582
language eng
recordid cdi_proquest_journals_1840031832
source Jstor Complete Legacy; Periodicals Index Online; JSTOR Mathematics & Statistics
subjects Coordinate systems
Dot product of vectors
Geometric planes
Geometry
Line segments
Mathematical theorems
Mathematical vectors
Ordered pairs
Parallel lines
Real numbers
title An approach to vector geometry
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T05%3A01%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20approach%20to%20vector%20geometry&rft.jtitle=The%20Mathematics%20teacher&rft.au=TROYER,%20ROBERT%20J.&rft.date=1963-05-01&rft.volume=56&rft.issue=5&rft.spage=290&rft.epage=297&rft.pages=290-297&rft.issn=0025-5769&rft.eissn=2330-0582&rft_id=info:doi/10.5951/MT.56.5.0290&rft_dat=%3Cjstor_proqu%3E27956822%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1840031832&rft_id=info:pmid/&rft_jstor_id=27956822&rfr_iscdi=true