A Two-Stage Probit Model for Predicting Recovery Rates

We propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of financial services research 2016-12, Vol.50 (3), p.311-339
Hauptverfasser: Hwang, Ruey-Ching, Chung, Huimin, Chu, C. K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 3
container_start_page 311
container_title Journal of financial services research
container_volume 50
creator Hwang, Ruey-Ching
Chung, Huimin
Chu, C. K.
description We propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the three ones. Then, for the debt that is classified as lying between the two extremes, we use the probit transformation regression to predict its recovery rate. We use real data sets to support TPM. Our empirical results show that macroeconomic-, debt-, firm-, and industry-specific variables are all important in determining recovery rates. Using an expanding rolling window approach, our empirical results confirm that TPM has better and more robust out-of-sample performance than its alternatives, in the sense of yielding more accurate predicted recovery rates.
doi_str_mv 10.1007/s10693-015-0231-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1837167160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4243082051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-868434ecf8a595a47ff66e0f0ad8a0d7000bcfa6ea83e4bcdb167b270e43f94f3</originalsourceid><addsrcrecordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3SyySbZYylqhYpS6zlks5OypTY12Sp9e1PWgxdPA8P3_zN8hFwzuGUA6i4xkDWnwCoKJWcUTsiIVSpvFK9OyQjqEqiuKjgnFymtAaDWQo6InBTL70DfervC4jWGpuuL59DipvAh5gW2neu77apYoAtfGA_FwvaYLsmZt5uEV79zTN4f7pfTGZ2_PD5NJ3PquIaeaqkFF-i8tlVdWaG8lxLBg221hVblNxrnrUSrOYrGtQ2TqikVoOC-Fp6Pyc3Qu4vhc4-pN-uwj9t80jDNVaaZhEyxgXIxpBTRm13sPmw8GAbmqMcMekzWY456zDFTDpmU2e0K45_mf0M_I3FmVw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837167160</pqid></control><display><type>article</type><title>A Two-Stage Probit Model for Predicting Recovery Rates</title><source>Springer Nature - Complete Springer Journals</source><source>EBSCOhost Business Source Complete</source><creator>Hwang, Ruey-Ching ; Chung, Huimin ; Chu, C. K.</creator><creatorcontrib>Hwang, Ruey-Ching ; Chung, Huimin ; Chu, C. K.</creatorcontrib><description>We propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the three ones. Then, for the debt that is classified as lying between the two extremes, we use the probit transformation regression to predict its recovery rate. We use real data sets to support TPM. Our empirical results show that macroeconomic-, debt-, firm-, and industry-specific variables are all important in determining recovery rates. Using an expanding rolling window approach, our empirical results confirm that TPM has better and more robust out-of-sample performance than its alternatives, in the sense of yielding more accurate predicted recovery rates.</description><identifier>ISSN: 0920-8550</identifier><identifier>EISSN: 1573-0735</identifier><identifier>DOI: 10.1007/s10693-015-0231-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Bond ratings ; Decision trees ; Economic models ; Economic statistics ; Economic theory ; Economics and Finance ; Finance ; Financial instruments ; Financial Services ; Macroeconomics ; Macroeconomics/Monetary Economics//Financial Economics ; Random variables ; Regression analysis ; Studies</subject><ispartof>Journal of financial services research, 2016-12, Vol.50 (3), p.311-339</ispartof><rights>Springer Science+Business Media New York 2015</rights><rights>Springer Science+Business Media New York 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-868434ecf8a595a47ff66e0f0ad8a0d7000bcfa6ea83e4bcdb167b270e43f94f3</citedby><cites>FETCH-LOGICAL-c380t-868434ecf8a595a47ff66e0f0ad8a0d7000bcfa6ea83e4bcdb167b270e43f94f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10693-015-0231-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10693-015-0231-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Hwang, Ruey-Ching</creatorcontrib><creatorcontrib>Chung, Huimin</creatorcontrib><creatorcontrib>Chu, C. K.</creatorcontrib><title>A Two-Stage Probit Model for Predicting Recovery Rates</title><title>Journal of financial services research</title><addtitle>J Financ Serv Res</addtitle><description>We propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the three ones. Then, for the debt that is classified as lying between the two extremes, we use the probit transformation regression to predict its recovery rate. We use real data sets to support TPM. Our empirical results show that macroeconomic-, debt-, firm-, and industry-specific variables are all important in determining recovery rates. Using an expanding rolling window approach, our empirical results confirm that TPM has better and more robust out-of-sample performance than its alternatives, in the sense of yielding more accurate predicted recovery rates.</description><subject>Bond ratings</subject><subject>Decision trees</subject><subject>Economic models</subject><subject>Economic statistics</subject><subject>Economic theory</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Financial instruments</subject><subject>Financial Services</subject><subject>Macroeconomics</subject><subject>Macroeconomics/Monetary Economics//Financial Economics</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Studies</subject><issn>0920-8550</issn><issn>1573-0735</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kMFKAzEQhoMoWKsP4G3Bc3SyySbZYylqhYpS6zlks5OypTY12Sp9e1PWgxdPA8P3_zN8hFwzuGUA6i4xkDWnwCoKJWcUTsiIVSpvFK9OyQjqEqiuKjgnFymtAaDWQo6InBTL70DfervC4jWGpuuL59DipvAh5gW2neu77apYoAtfGA_FwvaYLsmZt5uEV79zTN4f7pfTGZ2_PD5NJ3PquIaeaqkFF-i8tlVdWaG8lxLBg221hVblNxrnrUSrOYrGtQ2TqikVoOC-Fp6Pyc3Qu4vhc4-pN-uwj9t80jDNVaaZhEyxgXIxpBTRm13sPmw8GAbmqMcMekzWY456zDFTDpmU2e0K45_mf0M_I3FmVw</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Hwang, Ruey-Ching</creator><creator>Chung, Huimin</creator><creator>Chu, C. K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>0U~</scope><scope>1-H</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>885</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ANIOZ</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRAZJ</scope><scope>FRNLG</scope><scope>F~G</scope><scope>JBE</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>L.0</scope><scope>M0C</scope><scope>M1F</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>A Two-Stage Probit Model for Predicting Recovery Rates</title><author>Hwang, Ruey-Ching ; Chung, Huimin ; Chu, C. K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-868434ecf8a595a47ff66e0f0ad8a0d7000bcfa6ea83e4bcdb167b270e43f94f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bond ratings</topic><topic>Decision trees</topic><topic>Economic models</topic><topic>Economic statistics</topic><topic>Economic theory</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Financial instruments</topic><topic>Financial Services</topic><topic>Macroeconomics</topic><topic>Macroeconomics/Monetary Economics//Financial Economics</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Ruey-Ching</creatorcontrib><creatorcontrib>Chung, Huimin</creatorcontrib><creatorcontrib>Chu, C. K.</creatorcontrib><collection>CrossRef</collection><collection>Global News &amp; ABI/Inform Professional</collection><collection>Trade PRO</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Banking Information Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Accounting, Tax &amp; Banking Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Accounting, Tax &amp; Banking Collection (Alumni)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Professional Standard</collection><collection>ABI/INFORM Global</collection><collection>Banking Information Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of financial services research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Ruey-Ching</au><au>Chung, Huimin</au><au>Chu, C. K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Stage Probit Model for Predicting Recovery Rates</atitle><jtitle>Journal of financial services research</jtitle><stitle>J Financ Serv Res</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>50</volume><issue>3</issue><spage>311</spage><epage>339</epage><pages>311-339</pages><issn>0920-8550</issn><eissn>1573-0735</eissn><abstract>We propose a two-stage probit model (TPM) to predict recovery rates. By the ordinal nature of the three categories of recovery rates: total loss, total recovery, and lying between the two extremes, we first use the ordered probit model to predict the category that a given debt belongs to among the three ones. Then, for the debt that is classified as lying between the two extremes, we use the probit transformation regression to predict its recovery rate. We use real data sets to support TPM. Our empirical results show that macroeconomic-, debt-, firm-, and industry-specific variables are all important in determining recovery rates. Using an expanding rolling window approach, our empirical results confirm that TPM has better and more robust out-of-sample performance than its alternatives, in the sense of yielding more accurate predicted recovery rates.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10693-015-0231-0</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0920-8550
ispartof Journal of financial services research, 2016-12, Vol.50 (3), p.311-339
issn 0920-8550
1573-0735
language eng
recordid cdi_proquest_journals_1837167160
source Springer Nature - Complete Springer Journals; EBSCOhost Business Source Complete
subjects Bond ratings
Decision trees
Economic models
Economic statistics
Economic theory
Economics and Finance
Finance
Financial instruments
Financial Services
Macroeconomics
Macroeconomics/Monetary Economics//Financial Economics
Random variables
Regression analysis
Studies
title A Two-Stage Probit Model for Predicting Recovery Rates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A43%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Stage%20Probit%20Model%20for%20Predicting%20Recovery%20Rates&rft.jtitle=Journal%20of%20financial%20services%20research&rft.au=Hwang,%20Ruey-Ching&rft.date=2016-12-01&rft.volume=50&rft.issue=3&rft.spage=311&rft.epage=339&rft.pages=311-339&rft.issn=0920-8550&rft.eissn=1573-0735&rft_id=info:doi/10.1007/s10693-015-0231-0&rft_dat=%3Cproquest_cross%3E4243082051%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837167160&rft_id=info:pmid/&rfr_iscdi=true