Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild

Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a se...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2016-12, Vol.38 (12), p.2444-2456
Hauptverfasser: Proença, Hugo, Neves, Joao C., Barra, Silvio, Marques, Tiago, Moreno, Juan C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2456
container_issue 12
container_start_page 2444
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 38
creator Proença, Hugo
Neves, Joao C.
Barra, Silvio
Marques, Tiago
Moreno, Juan C.
description Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.
doi_str_mv 10.1109/TPAMI.2016.2522441
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1837112845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7393850</ieee_id><sourcerecordid>1837112845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</originalsourceid><addsrcrecordid>eNpdkUtLw0AQgBdRbH38AQUJePGSdl_Jzh5LqW2lYtGKx7BJJpqSZGs2OfjvTR_24Glg5pth5htCbhgdMEb1cLUcPc8HnLJwwAPOpWQnpM-00L4IhD4l_a7CfQAOPXLh3JpSJgMqzkmPK-AyANEn0yebV403Q5N6S-tw-GazxluYGAtv4pq8NE1uKy-ztTdrS1N5r5jYzyrfZeeVv_pC_yMv0itylpnC4fUhXpL3x8lqPPMXL9P5eLTwExGwxg-5ZCqRKpYhxEyKRCujIExjwERjwIHFiqdaCwUqVGlIE85TAEPRxIERobgkD_u5m9p-t-iaqMxdgkVhKrStixgIJSgHgA69_4eubVtX3XY7ijEOMugovqeS2jpXYxZt6u7q-idiNNpqjnaao63m6KC5a7o7jG7jEtNjy5_XDrjdAzkiHstKaAHdB34B-w5-FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837112845</pqid></control><display><type>article</type><title>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</title><source>IEEE Electronic Library (IEL)</source><creator>Proença, Hugo ; Neves, Joao C. ; Barra, Silvio ; Marques, Tiago ; Moreno, Juan C.</creator><creatorcontrib>Proença, Hugo ; Neves, Joao C. ; Barra, Silvio ; Marques, Tiago ; Moreno, Juan C.</creatorcontrib><description>Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2522441</identifier><identifier>PMID: 27824583</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anthropometry ; Biometric Identification - methods ; Biometric recognition systems ; Biometrics ; Biometrics (access control) ; Centroids ; Energy conservation ; Facial Recognition ; Head - anatomy &amp; histology ; Hidden Markov models ; homeland security ; Humans ; Hypotheses ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Machine Learning ; Magnetic heads ; Metric space ; Morphology ; Pattern Recognition, Automated - methods ; Photography ; Privacy ; privacy-preserving recognition ; Projective geometry ; Queries ; Sensitivity and Specificity ; Soft biometrics ; Surveillance ; Three-dimensional displays ; visual surveillance</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2444-2456</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</citedby><cites>FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</cites><orcidid>0000-0003-2551-8570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7393850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7393850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27824583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Proença, Hugo</creatorcontrib><creatorcontrib>Neves, Joao C.</creatorcontrib><creatorcontrib>Barra, Silvio</creatorcontrib><creatorcontrib>Marques, Tiago</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><title>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.</description><subject>Algorithms</subject><subject>Anthropometry</subject><subject>Biometric Identification - methods</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Centroids</subject><subject>Energy conservation</subject><subject>Facial Recognition</subject><subject>Head - anatomy &amp; histology</subject><subject>Hidden Markov models</subject><subject>homeland security</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Machine Learning</subject><subject>Magnetic heads</subject><subject>Metric space</subject><subject>Morphology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Photography</subject><subject>Privacy</subject><subject>privacy-preserving recognition</subject><subject>Projective geometry</subject><subject>Queries</subject><subject>Sensitivity and Specificity</subject><subject>Soft biometrics</subject><subject>Surveillance</subject><subject>Three-dimensional displays</subject><subject>visual surveillance</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkUtLw0AQgBdRbH38AQUJePGSdl_Jzh5LqW2lYtGKx7BJJpqSZGs2OfjvTR_24Glg5pth5htCbhgdMEb1cLUcPc8HnLJwwAPOpWQnpM-00L4IhD4l_a7CfQAOPXLh3JpSJgMqzkmPK-AyANEn0yebV403Q5N6S-tw-GazxluYGAtv4pq8NE1uKy-ztTdrS1N5r5jYzyrfZeeVv_pC_yMv0itylpnC4fUhXpL3x8lqPPMXL9P5eLTwExGwxg-5ZCqRKpYhxEyKRCujIExjwERjwIHFiqdaCwUqVGlIE85TAEPRxIERobgkD_u5m9p-t-iaqMxdgkVhKrStixgIJSgHgA69_4eubVtX3XY7ijEOMugovqeS2jpXYxZt6u7q-idiNNpqjnaao63m6KC5a7o7jG7jEtNjy5_XDrjdAzkiHstKaAHdB34B-w5-FA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Proença, Hugo</creator><creator>Neves, Joao C.</creator><creator>Barra, Silvio</creator><creator>Marques, Tiago</creator><creator>Moreno, Juan C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2551-8570</orcidid></search><sort><creationdate>20161201</creationdate><title>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</title><author>Proença, Hugo ; Neves, Joao C. ; Barra, Silvio ; Marques, Tiago ; Moreno, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Anthropometry</topic><topic>Biometric Identification - methods</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Centroids</topic><topic>Energy conservation</topic><topic>Facial Recognition</topic><topic>Head - anatomy &amp; histology</topic><topic>Hidden Markov models</topic><topic>homeland security</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Machine Learning</topic><topic>Magnetic heads</topic><topic>Metric space</topic><topic>Morphology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Photography</topic><topic>Privacy</topic><topic>privacy-preserving recognition</topic><topic>Projective geometry</topic><topic>Queries</topic><topic>Sensitivity and Specificity</topic><topic>Soft biometrics</topic><topic>Surveillance</topic><topic>Three-dimensional displays</topic><topic>visual surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proença, Hugo</creatorcontrib><creatorcontrib>Neves, Joao C.</creatorcontrib><creatorcontrib>Barra, Silvio</creatorcontrib><creatorcontrib>Marques, Tiago</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Proença, Hugo</au><au>Neves, Joao C.</au><au>Barra, Silvio</au><au>Marques, Tiago</au><au>Moreno, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>38</volume><issue>12</issue><spage>2444</spage><epage>2456</epage><pages>2444-2456</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27824583</pmid><doi>10.1109/TPAMI.2016.2522441</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2551-8570</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2444-2456
issn 0162-8828
1939-3539
2160-9292
language eng
recordid cdi_proquest_journals_1837112845
source IEEE Electronic Library (IEL)
subjects Algorithms
Anthropometry
Biometric Identification - methods
Biometric recognition systems
Biometrics
Biometrics (access control)
Centroids
Energy conservation
Facial Recognition
Head - anatomy & histology
Hidden Markov models
homeland security
Humans
Hypotheses
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Imaging, Three-Dimensional
Machine Learning
Magnetic heads
Metric space
Morphology
Pattern Recognition, Automated - methods
Photography
Privacy
privacy-preserving recognition
Projective geometry
Queries
Sensitivity and Specificity
Soft biometrics
Surveillance
Three-dimensional displays
visual surveillance
title Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Head%20Pose/Soft%20Label%20Estimation%20for%20Human%20Recognition%20In-The-Wild&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Proen%C3%A7a,%20Hugo&rft.date=2016-12-01&rft.volume=38&rft.issue=12&rft.spage=2444&rft.epage=2456&rft.pages=2444-2456&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2522441&rft_dat=%3Cproquest_RIE%3E1837112845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837112845&rft_id=info:pmid/27824583&rft_ieee_id=7393850&rfr_iscdi=true