Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild
Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a se...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence 2016-12, Vol.38 (12), p.2444-2456 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2456 |
---|---|
container_issue | 12 |
container_start_page | 2444 |
container_title | IEEE transactions on pattern analysis and machine intelligence |
container_volume | 38 |
creator | Proença, Hugo Neves, Joao C. Barra, Silvio Marques, Tiago Moreno, Juan C. |
description | Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments. |
doi_str_mv | 10.1109/TPAMI.2016.2522441 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_1837112845</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7393850</ieee_id><sourcerecordid>1837112845</sourcerecordid><originalsourceid>FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</originalsourceid><addsrcrecordid>eNpdkUtLw0AQgBdRbH38AQUJePGSdl_Jzh5LqW2lYtGKx7BJJpqSZGs2OfjvTR_24Glg5pth5htCbhgdMEb1cLUcPc8HnLJwwAPOpWQnpM-00L4IhD4l_a7CfQAOPXLh3JpSJgMqzkmPK-AyANEn0yebV403Q5N6S-tw-GazxluYGAtv4pq8NE1uKy-ztTdrS1N5r5jYzyrfZeeVv_pC_yMv0itylpnC4fUhXpL3x8lqPPMXL9P5eLTwExGwxg-5ZCqRKpYhxEyKRCujIExjwERjwIHFiqdaCwUqVGlIE85TAEPRxIERobgkD_u5m9p-t-iaqMxdgkVhKrStixgIJSgHgA69_4eubVtX3XY7ijEOMugovqeS2jpXYxZt6u7q-idiNNpqjnaao63m6KC5a7o7jG7jEtNjy5_XDrjdAzkiHstKaAHdB34B-w5-FA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1837112845</pqid></control><display><type>article</type><title>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</title><source>IEEE Electronic Library (IEL)</source><creator>Proença, Hugo ; Neves, Joao C. ; Barra, Silvio ; Marques, Tiago ; Moreno, Juan C.</creator><creatorcontrib>Proença, Hugo ; Neves, Joao C. ; Barra, Silvio ; Marques, Tiago ; Moreno, Juan C.</creatorcontrib><description>Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>EISSN: 2160-9292</identifier><identifier>DOI: 10.1109/TPAMI.2016.2522441</identifier><identifier>PMID: 27824583</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Anthropometry ; Biometric Identification - methods ; Biometric recognition systems ; Biometrics ; Biometrics (access control) ; Centroids ; Energy conservation ; Facial Recognition ; Head - anatomy & histology ; Hidden Markov models ; homeland security ; Humans ; Hypotheses ; Image Enhancement - methods ; Image Interpretation, Computer-Assisted - methods ; Imaging, Three-Dimensional ; Machine Learning ; Magnetic heads ; Metric space ; Morphology ; Pattern Recognition, Automated - methods ; Photography ; Privacy ; privacy-preserving recognition ; Projective geometry ; Queries ; Sensitivity and Specificity ; Soft biometrics ; Surveillance ; Three-dimensional displays ; visual surveillance</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2444-2456</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</citedby><cites>FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</cites><orcidid>0000-0003-2551-8570</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7393850$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7393850$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27824583$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Proença, Hugo</creatorcontrib><creatorcontrib>Neves, Joao C.</creatorcontrib><creatorcontrib>Barra, Silvio</creatorcontrib><creatorcontrib>Marques, Tiago</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><title>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><description>Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.</description><subject>Algorithms</subject><subject>Anthropometry</subject><subject>Biometric Identification - methods</subject><subject>Biometric recognition systems</subject><subject>Biometrics</subject><subject>Biometrics (access control)</subject><subject>Centroids</subject><subject>Energy conservation</subject><subject>Facial Recognition</subject><subject>Head - anatomy & histology</subject><subject>Hidden Markov models</subject><subject>homeland security</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Image Enhancement - methods</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Imaging, Three-Dimensional</subject><subject>Machine Learning</subject><subject>Magnetic heads</subject><subject>Metric space</subject><subject>Morphology</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Photography</subject><subject>Privacy</subject><subject>privacy-preserving recognition</subject><subject>Projective geometry</subject><subject>Queries</subject><subject>Sensitivity and Specificity</subject><subject>Soft biometrics</subject><subject>Surveillance</subject><subject>Three-dimensional displays</subject><subject>visual surveillance</subject><issn>0162-8828</issn><issn>1939-3539</issn><issn>2160-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkUtLw0AQgBdRbH38AQUJePGSdl_Jzh5LqW2lYtGKx7BJJpqSZGs2OfjvTR_24Glg5pth5htCbhgdMEb1cLUcPc8HnLJwwAPOpWQnpM-00L4IhD4l_a7CfQAOPXLh3JpSJgMqzkmPK-AyANEn0yebV403Q5N6S-tw-GazxluYGAtv4pq8NE1uKy-ztTdrS1N5r5jYzyrfZeeVv_pC_yMv0itylpnC4fUhXpL3x8lqPPMXL9P5eLTwExGwxg-5ZCqRKpYhxEyKRCujIExjwERjwIHFiqdaCwUqVGlIE85TAEPRxIERobgkD_u5m9p-t-iaqMxdgkVhKrStixgIJSgHgA69_4eubVtX3XY7ijEOMugovqeS2jpXYxZt6u7q-idiNNpqjnaao63m6KC5a7o7jG7jEtNjy5_XDrjdAzkiHstKaAHdB34B-w5-FA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Proença, Hugo</creator><creator>Neves, Joao C.</creator><creator>Barra, Silvio</creator><creator>Marques, Tiago</creator><creator>Moreno, Juan C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2551-8570</orcidid></search><sort><creationdate>20161201</creationdate><title>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</title><author>Proença, Hugo ; Neves, Joao C. ; Barra, Silvio ; Marques, Tiago ; Moreno, Juan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c351t-62417c47b468b143c97a786db8ec9e5281b72d99378767d60c22d88a0eab5a363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algorithms</topic><topic>Anthropometry</topic><topic>Biometric Identification - methods</topic><topic>Biometric recognition systems</topic><topic>Biometrics</topic><topic>Biometrics (access control)</topic><topic>Centroids</topic><topic>Energy conservation</topic><topic>Facial Recognition</topic><topic>Head - anatomy & histology</topic><topic>Hidden Markov models</topic><topic>homeland security</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Image Enhancement - methods</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Imaging, Three-Dimensional</topic><topic>Machine Learning</topic><topic>Magnetic heads</topic><topic>Metric space</topic><topic>Morphology</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Photography</topic><topic>Privacy</topic><topic>privacy-preserving recognition</topic><topic>Projective geometry</topic><topic>Queries</topic><topic>Sensitivity and Specificity</topic><topic>Soft biometrics</topic><topic>Surveillance</topic><topic>Three-dimensional displays</topic><topic>visual surveillance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proença, Hugo</creatorcontrib><creatorcontrib>Neves, Joao C.</creatorcontrib><creatorcontrib>Barra, Silvio</creatorcontrib><creatorcontrib>Marques, Tiago</creatorcontrib><creatorcontrib>Moreno, Juan C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Proença, Hugo</au><au>Neves, Joao C.</au><au>Barra, Silvio</au><au>Marques, Tiago</au><au>Moreno, Juan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><addtitle>IEEE Trans Pattern Anal Mach Intell</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>38</volume><issue>12</issue><spage>2444</spage><epage>2456</epage><pages>2444-2456</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><eissn>2160-9292</eissn><coden>ITPIDJ</coden><abstract>Soft biometrics have been emerging to complement other traits and are particularly useful for poor quality data. In this paper, we propose an efficient algorithm to estimate human head poses and to infer soft biometric labels based on the 3D morphology of the human head. Starting by considering a set of pose hypotheses, we use a learning set of head shapes synthesized from anthropometric surveys to derive a set of 3D head centroids that constitutes a metric space. Next, representing queries by sets of 2D head landmarks, we use projective geometry techniques to rank efficiently the joint 3D head centroids/pose hypotheses according to their likelihood of matching each query. The rationale is that the most likely hypotheses are sufficiently close to the query, so a good solution can be found by convex energy minimization techniques. Once a solution has been found, the 3D head centroid and the query are assumed to have similar morphology, yielding the soft label. Our experiments point toward the usefulness of the proposed solution, which can improve the effectiveness of face recognizers and can also be used as a privacy-preserving solution for biometric recognition in public environments.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>27824583</pmid><doi>10.1109/TPAMI.2016.2522441</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-2551-8570</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0162-8828 |
ispartof | IEEE transactions on pattern analysis and machine intelligence, 2016-12, Vol.38 (12), p.2444-2456 |
issn | 0162-8828 1939-3539 2160-9292 |
language | eng |
recordid | cdi_proquest_journals_1837112845 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Anthropometry Biometric Identification - methods Biometric recognition systems Biometrics Biometrics (access control) Centroids Energy conservation Facial Recognition Head - anatomy & histology Hidden Markov models homeland security Humans Hypotheses Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Imaging, Three-Dimensional Machine Learning Magnetic heads Metric space Morphology Pattern Recognition, Automated - methods Photography Privacy privacy-preserving recognition Projective geometry Queries Sensitivity and Specificity Soft biometrics Surveillance Three-dimensional displays visual surveillance |
title | Joint Head Pose/Soft Label Estimation for Human Recognition In-The-Wild |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Joint%20Head%20Pose/Soft%20Label%20Estimation%20for%20Human%20Recognition%20In-The-Wild&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Proen%C3%A7a,%20Hugo&rft.date=2016-12-01&rft.volume=38&rft.issue=12&rft.spage=2444&rft.epage=2456&rft.pages=2444-2456&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/TPAMI.2016.2522441&rft_dat=%3Cproquest_RIE%3E1837112845%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1837112845&rft_id=info:pmid/27824583&rft_ieee_id=7393850&rfr_iscdi=true |