Textual Supportiveness Recognition Based on Combinations of Syntax Features for Automated Argument Generation
This paper describes a technique to recognize “supportiveness” of a given text for an argument topic object and a value. Given an argument topic object (o), a value (v), and a text fragment (t), supportiveness refers to whether t supports a hypothesis “o promotes/suppresses v” or not. For example, w...
Gespeichert in:
Veröffentlicht in: | Transactions of the Japanese Society for Artificial Intelligence 2016/11/01, Vol.31(6), pp.AI30-L_1-12 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 6 |
container_start_page | AI30-L_1 |
container_title | Transactions of the Japanese Society for Artificial Intelligence |
container_volume | 31 |
creator | Sato, Misa Yanai, Kohsuke Yanase, Toshihiko Miyoshi, Toshinori Koreeda, Yuta Niwa, Yoshiki |
description | This paper describes a technique to recognize “supportiveness” of a given text for an argument topic object and a value. Given an argument topic object (o), a value (v), and a text fragment (t), supportiveness refers to whether t supports a hypothesis “o promotes/suppresses v” or not. For example, with “o: casino” and “v: employment”, then a text “The casinos in Mississippi have created 35,000 jobs.” should support a hypothesis “o promotes v”. This technique enables to automatically collect texts representing reasons and counterexamples for some hypothesis that humans build up (e.g. “casino promotes employment”), combined with text search. Because the difference from relation extraction is polarity of relations, proposed method utilizes multiplifications based on local syntax structures, extending reversing hypothesis in sentiment analysis. We propose feature combinations consisting of “primary features” and “secondary features” for supportiveness recognition. “Primary features” represent local syntax structures around a given target or a given value. “Secondary features” represent global syntax structures generated by combining the primary features. The proposed method calculates weighted sum of secondary features to recognize promoting/suppressing supportiveness. The experiments showed that our method outperforms a Bag-of-Words baseline and a conventional relation extraction method. |
doi_str_mv | 10.1527/tjsai.AI30-L |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1836360575</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1836360575</sourcerecordid><originalsourceid>FETCH-LOGICAL-c232l-917a76810c122ec5c427f24215b2e6142391227b3b13eac09bd8b6821a5287dd3</originalsourceid><addsrcrecordid>eNo9kE9rg0AQxaW00JDm1g-w0GtN94-65mhCkwaEQpOel3UdU4O6dnctybevxpDLzDDze2_ged4zwXMSUv7mjlaW82TLsJ_eeRPCgsiPMcP31xlzEjx6M2vLDGNCWUBwOPHqPZxcJyu069pWG1f-QQPWoi9Q-tCUrtQNWkoLOeqHla6zspHD0iJdoN25cfKE1iBdZ8CiQhuUdE7X0vWCxBy6GhqHNr2luaievIdCVhZm1z71vtfv-9WHn35utqsk9RVltPIXhEsexQQrQimoUAWUFzSgJMwoRCSgbNEfeMYywkAqvMjyOItiSmRIY57nbOq9jL6t0b8dWCeOujNN_1KQmEUswiEPe-p1pJTR1hooRGvKWpqzIFgMmYpLpmLIVKQ9vhzxo3XyADdY9qmpCq4wIyIayii6HdWPNAIa9g8oQoP7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1836360575</pqid></control><display><type>article</type><title>Textual Supportiveness Recognition Based on Combinations of Syntax Features for Automated Argument Generation</title><source>J-STAGE Free</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sato, Misa ; Yanai, Kohsuke ; Yanase, Toshihiko ; Miyoshi, Toshinori ; Koreeda, Yuta ; Niwa, Yoshiki</creator><creatorcontrib>Sato, Misa ; Yanai, Kohsuke ; Yanase, Toshihiko ; Miyoshi, Toshinori ; Koreeda, Yuta ; Niwa, Yoshiki</creatorcontrib><description>This paper describes a technique to recognize “supportiveness” of a given text for an argument topic object and a value. Given an argument topic object (o), a value (v), and a text fragment (t), supportiveness refers to whether t supports a hypothesis “o promotes/suppresses v” or not. For example, with “o: casino” and “v: employment”, then a text “The casinos in Mississippi have created 35,000 jobs.” should support a hypothesis “o promotes v”. This technique enables to automatically collect texts representing reasons and counterexamples for some hypothesis that humans build up (e.g. “casino promotes employment”), combined with text search. Because the difference from relation extraction is polarity of relations, proposed method utilizes multiplifications based on local syntax structures, extending reversing hypothesis in sentiment analysis. We propose feature combinations consisting of “primary features” and “secondary features” for supportiveness recognition. “Primary features” represent local syntax structures around a given target or a given value. “Secondary features” represent global syntax structures generated by combining the primary features. The proposed method calculates weighted sum of secondary features to recognize promoting/suppressing supportiveness. The experiments showed that our method outperforms a Bag-of-Words baseline and a conventional relation extraction method.</description><identifier>ISSN: 1346-0714</identifier><identifier>EISSN: 1346-8030</identifier><identifier>DOI: 10.1527/tjsai.AI30-L</identifier><language>eng ; jpn</language><publisher>Tokyo: The Japanese Society for Artificial Intelligence</publisher><subject>argumentation ; Data mining ; debating artificial intelligence ; Employment ; Feature recognition ; Hypotheses ; natural language processing ; Object recognition ; Sentiment analysis ; Syntax ; text generation</subject><ispartof>Transactions of the Japanese Society for Artificial Intelligence, 2016/11/01, Vol.31(6), pp.AI30-L_1-12</ispartof><rights>The Japanese Society for Artificial Intelligence 2016</rights><rights>Copyright Japan Science and Technology Agency 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c232l-917a76810c122ec5c427f24215b2e6142391227b3b13eac09bd8b6821a5287dd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1877,27901,27902</link.rule.ids></links><search><creatorcontrib>Sato, Misa</creatorcontrib><creatorcontrib>Yanai, Kohsuke</creatorcontrib><creatorcontrib>Yanase, Toshihiko</creatorcontrib><creatorcontrib>Miyoshi, Toshinori</creatorcontrib><creatorcontrib>Koreeda, Yuta</creatorcontrib><creatorcontrib>Niwa, Yoshiki</creatorcontrib><title>Textual Supportiveness Recognition Based on Combinations of Syntax Features for Automated Argument Generation</title><title>Transactions of the Japanese Society for Artificial Intelligence</title><description>This paper describes a technique to recognize “supportiveness” of a given text for an argument topic object and a value. Given an argument topic object (o), a value (v), and a text fragment (t), supportiveness refers to whether t supports a hypothesis “o promotes/suppresses v” or not. For example, with “o: casino” and “v: employment”, then a text “The casinos in Mississippi have created 35,000 jobs.” should support a hypothesis “o promotes v”. This technique enables to automatically collect texts representing reasons and counterexamples for some hypothesis that humans build up (e.g. “casino promotes employment”), combined with text search. Because the difference from relation extraction is polarity of relations, proposed method utilizes multiplifications based on local syntax structures, extending reversing hypothesis in sentiment analysis. We propose feature combinations consisting of “primary features” and “secondary features” for supportiveness recognition. “Primary features” represent local syntax structures around a given target or a given value. “Secondary features” represent global syntax structures generated by combining the primary features. The proposed method calculates weighted sum of secondary features to recognize promoting/suppressing supportiveness. The experiments showed that our method outperforms a Bag-of-Words baseline and a conventional relation extraction method.</description><subject>argumentation</subject><subject>Data mining</subject><subject>debating artificial intelligence</subject><subject>Employment</subject><subject>Feature recognition</subject><subject>Hypotheses</subject><subject>natural language processing</subject><subject>Object recognition</subject><subject>Sentiment analysis</subject><subject>Syntax</subject><subject>text generation</subject><issn>1346-0714</issn><issn>1346-8030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kE9rg0AQxaW00JDm1g-w0GtN94-65mhCkwaEQpOel3UdU4O6dnctybevxpDLzDDze2_ged4zwXMSUv7mjlaW82TLsJ_eeRPCgsiPMcP31xlzEjx6M2vLDGNCWUBwOPHqPZxcJyu069pWG1f-QQPWoi9Q-tCUrtQNWkoLOeqHla6zspHD0iJdoN25cfKE1iBdZ8CiQhuUdE7X0vWCxBy6GhqHNr2luaievIdCVhZm1z71vtfv-9WHn35utqsk9RVltPIXhEsexQQrQimoUAWUFzSgJMwoRCSgbNEfeMYywkAqvMjyOItiSmRIY57nbOq9jL6t0b8dWCeOujNN_1KQmEUswiEPe-p1pJTR1hooRGvKWpqzIFgMmYpLpmLIVKQ9vhzxo3XyADdY9qmpCq4wIyIayii6HdWPNAIa9g8oQoP7</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Sato, Misa</creator><creator>Yanai, Kohsuke</creator><creator>Yanase, Toshihiko</creator><creator>Miyoshi, Toshinori</creator><creator>Koreeda, Yuta</creator><creator>Niwa, Yoshiki</creator><general>The Japanese Society for Artificial Intelligence</general><general>Japan Science and Technology Agency</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20161101</creationdate><title>Textual Supportiveness Recognition Based on Combinations of Syntax Features for Automated Argument Generation</title><author>Sato, Misa ; Yanai, Kohsuke ; Yanase, Toshihiko ; Miyoshi, Toshinori ; Koreeda, Yuta ; Niwa, Yoshiki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c232l-917a76810c122ec5c427f24215b2e6142391227b3b13eac09bd8b6821a5287dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2016</creationdate><topic>argumentation</topic><topic>Data mining</topic><topic>debating artificial intelligence</topic><topic>Employment</topic><topic>Feature recognition</topic><topic>Hypotheses</topic><topic>natural language processing</topic><topic>Object recognition</topic><topic>Sentiment analysis</topic><topic>Syntax</topic><topic>text generation</topic><toplevel>online_resources</toplevel><creatorcontrib>Sato, Misa</creatorcontrib><creatorcontrib>Yanai, Kohsuke</creatorcontrib><creatorcontrib>Yanase, Toshihiko</creatorcontrib><creatorcontrib>Miyoshi, Toshinori</creatorcontrib><creatorcontrib>Koreeda, Yuta</creatorcontrib><creatorcontrib>Niwa, Yoshiki</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Misa</au><au>Yanai, Kohsuke</au><au>Yanase, Toshihiko</au><au>Miyoshi, Toshinori</au><au>Koreeda, Yuta</au><au>Niwa, Yoshiki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Textual Supportiveness Recognition Based on Combinations of Syntax Features for Automated Argument Generation</atitle><jtitle>Transactions of the Japanese Society for Artificial Intelligence</jtitle><date>2016-11-01</date><risdate>2016</risdate><volume>31</volume><issue>6</issue><spage>AI30-L_1</spage><epage>12</epage><pages>AI30-L_1-12</pages><issn>1346-0714</issn><eissn>1346-8030</eissn><abstract>This paper describes a technique to recognize “supportiveness” of a given text for an argument topic object and a value. Given an argument topic object (o), a value (v), and a text fragment (t), supportiveness refers to whether t supports a hypothesis “o promotes/suppresses v” or not. For example, with “o: casino” and “v: employment”, then a text “The casinos in Mississippi have created 35,000 jobs.” should support a hypothesis “o promotes v”. This technique enables to automatically collect texts representing reasons and counterexamples for some hypothesis that humans build up (e.g. “casino promotes employment”), combined with text search. Because the difference from relation extraction is polarity of relations, proposed method utilizes multiplifications based on local syntax structures, extending reversing hypothesis in sentiment analysis. We propose feature combinations consisting of “primary features” and “secondary features” for supportiveness recognition. “Primary features” represent local syntax structures around a given target or a given value. “Secondary features” represent global syntax structures generated by combining the primary features. The proposed method calculates weighted sum of secondary features to recognize promoting/suppressing supportiveness. The experiments showed that our method outperforms a Bag-of-Words baseline and a conventional relation extraction method.</abstract><cop>Tokyo</cop><pub>The Japanese Society for Artificial Intelligence</pub><doi>10.1527/tjsai.AI30-L</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1346-0714 |
ispartof | Transactions of the Japanese Society for Artificial Intelligence, 2016/11/01, Vol.31(6), pp.AI30-L_1-12 |
issn | 1346-0714 1346-8030 |
language | eng ; jpn |
recordid | cdi_proquest_journals_1836360575 |
source | J-STAGE Free; EZB-FREE-00999 freely available EZB journals |
subjects | argumentation Data mining debating artificial intelligence Employment Feature recognition Hypotheses natural language processing Object recognition Sentiment analysis Syntax text generation |
title | Textual Supportiveness Recognition Based on Combinations of Syntax Features for Automated Argument Generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T13%3A59%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Textual%20Supportiveness%20Recognition%20Based%20on%20Combinations%20of%20Syntax%20Features%20for%20Automated%20Argument%20Generation&rft.jtitle=Transactions%20of%20the%20Japanese%20Society%20for%20Artificial%20Intelligence&rft.au=Sato,%20Misa&rft.date=2016-11-01&rft.volume=31&rft.issue=6&rft.spage=AI30-L_1&rft.epage=12&rft.pages=AI30-L_1-12&rft.issn=1346-0714&rft.eissn=1346-8030&rft_id=info:doi/10.1527/tjsai.AI30-L&rft_dat=%3Cproquest_cross%3E1836360575%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1836360575&rft_id=info:pmid/&rfr_iscdi=true |